LIBD:Outils

Affichages
De LIBD.
(Différences entre les versions)
m (SQLfast)
(SQLfast)
Ligne 47 : Ligne 47 :
 
**<u>SQLfast Tutorial - 10. Looping - The final chapter</u>, chapter from ''SQLfast Database made easy - Tutorial and Case studies'', pages 109-114, PReCISE Research Center publication, draft version, 2014. [http://www.info.fundp.ac.be/~dbm/Documents/Tutorials/SQLfast/SQLfast-Tutorial-Looping.pdf [full text]]
 
**<u>SQLfast Tutorial - 10. Looping - The final chapter</u>, chapter from ''SQLfast Database made easy - Tutorial and Case studies'', pages 109-114, PReCISE Research Center publication, draft version, 2014. [http://www.info.fundp.ac.be/~dbm/Documents/Tutorials/SQLfast/SQLfast-Tutorial-Looping.pdf [full text]]
 
**<u>SQLfast Tutorial - 11. SQLfast expressions</u>, chapter from ''SQLfast Database made easy - Tutorial and Case studies'', pages 115-122, PReCISE Research Center publication, draft version, 2014. [http://www.info.fundp.ac.be/~dbm/Documents/Tutorials/SQLfast/SQLfast-Tutorial-Expressions.pdf [full text]]
 
**<u>SQLfast Tutorial - 11. SQLfast expressions</u>, chapter from ''SQLfast Database made easy - Tutorial and Case studies'', pages 115-122, PReCISE Research Center publication, draft version, 2014. [http://www.info.fundp.ac.be/~dbm/Documents/Tutorials/SQLfast/SQLfast-Tutorial-Expressions.pdf [full text]]
**<u>SQLfast Tutorial - 12. SQLfast expressions</u>, chapter from ''SQLfast Database made easy - Tutorial and Case studies'', pages 123-130, PReCISE Research Center publication, draft version, 2014. [http://www.info.fundp.ac.be/~dbm/Documents/Tutorials/SQLfast/SQLfast-Tutorial-Output-channels.pdf [full text]]
+
**<u>SQLfast Tutorial - 12. Output channels</u>, chapter from ''SQLfast Database made easy - Tutorial and Case studies'', pages 123-130, PReCISE Research Center publication, draft version, 2014. [http://www.info.fundp.ac.be/~dbm/Documents/Tutorials/SQLfast/SQLfast-Tutorial-Output-channels.pdf [full text]]
 
**<u>SQLfast Tutorial - 13. Dialogues</u>, chapter from ''SQLfast Database made easy - Tutorial and Case studies'', pages 131-150, PReCISE Research Center publication, draft version, 2014. [http://www.info.fundp.ac.be/~dbm/Documents/Tutorials/SQLfast/SQLfast-Tutorial-Dialogues.pdf [full text]]
 
**<u>SQLfast Tutorial - 13. Dialogues</u>, chapter from ''SQLfast Database made easy - Tutorial and Case studies'', pages 131-150, PReCISE Research Center publication, draft version, 2014. [http://www.info.fundp.ac.be/~dbm/Documents/Tutorials/SQLfast/SQLfast-Tutorial-Dialogues.pdf [full text]]
 
**<u>SQLfast Tutorial - 14. Advanced dialogues</u>, chapter from ''SQLfast Database made easy - Tutorial and Case studies'', pages 151-168, PReCISE Research Center publication, draft version, 2014. [http://www.info.fundp.ac.be/~dbm/Documents/Tutorials/SQLfast/SQLfast-Tutorial-Advanced-dialogues.pdf [full text]]
 
**<u>SQLfast Tutorial - 14. Advanced dialogues</u>, chapter from ''SQLfast Database made easy - Tutorial and Case studies'', pages 151-168, PReCISE Research Center publication, draft version, 2014. [http://www.info.fundp.ac.be/~dbm/Documents/Tutorials/SQLfast/SQLfast-Tutorial-Advanced-dialogues.pdf [full text]]

Version du 6 décembre 2013 à 13:04

OUTILS / TOOLS


<Retour à la page d'accueil / Back>


Sommaire

SQLfast

  • Type: High-level programming interface to relational databases
  • Description: SQLfast is both a scripting language based on SQL and an execution environment of SQLfast scripts devoted to (1) database learning, (2) database application prototyping and (3) fast development of light database applications. An SQLfast script (or program) is not limited in size: it can include just one statement but also several millions of statements. It is developed in Python and relies on the SQLite-3 DBMS (interfaces with other DBMS are in preparation). Its main design objectives are to hide the complexity of database programming (connections, cursors, transactions, metadata management, etc.) and of graphical interactions, to provide very high level functions and to provide a secure user-friendly execution environment. (SQLfast is an extension of the "SQL-Script Interpreter" (see below), the goal of which was to fill the gap between single-query objects and full VBA programs.) The SQLfast language and environment comprise the following components:
  • the full SQL language
  • variables in which data coming from a database, external files, computations ou GUI can be stored. Variables are typeless and have no size limit. A variable can contain data of any kind but also script fragments. The SQLfast macro processor can (recursively) replace variable references by their values.
  • control structures (if-then-else, for-endfor, while-endwhile, calling scripts, libraries, external applications, stop, pause)
  • reading/writing in external files
  • large object management (text, video, sound, BLOB, geographic objects, charts, drawings)
  • generation of complex formats (csv, xml, html, rtf, LateX, JSON, Key-value, SQL, tuples, etc.) These formats are defined by generic parameters.
  • import processors for standard formats (e.g., dbf, csv, Access, ESRI shapefiles)
  • a rich extensible GUI:
  • elementary boxes: messages, data entry forms, radio buttons, check buttons, text, images, drawing, charts, etc.
  • composite dialogue boxes: made of an arbitrary number of elementary boxes
  • extensible through Python external libraries
  • an integrated graphical engine to render SQLdraw scripts to produce still and animated drawing (charts,drawing,maps,animated simulation,etc.). SQLdraw scripts can be generated or manually produced through graphical SQLdraw Editor.
  • extensibility mechanisms:
  • technical subscripts (e.g., parameters setting),
  • functional subscripts (e.g., data loading, data checking, report generation),
  • Python external libraries (e.g., string manipulation, file management, geometric algorithms),
  • Python external applications (e.g., data import, interactive data conversion, complex dialogues, map digitizer,graphical engine),
  • language extension (through script precompiling)
  • external programs (web browsers, image processors, media processors, Office suite, etc.)
  • a builtin schema database (data dictionary)
  • reflexivity: an SQLfast script can generate, examine, modify and execute SQLfast scripts, including itself.
  • development and debugging tools
  • SQLfast tutorial. The SQLfast tutorial progressively introduces the reader to the basics of SQLfast, from elementary data manipulation through very short scripts to complex features such as metadata-based script generation, recursive programming and language extension. It also includes some representative applications: database creation and loading, database exploration, database migration, library management, interactive SQL interpreter, a photo album manager and browser, a statistics manager and visualizer, a bill of material manager, a GIS (based on ESRI shapefiles), text indexing and searching, analysis of an undocumented database, topological sorting of a relational schema, GALOIS lattice generation, automatic GUI generation, automated SQL trainer, ontology-based text indexing and retrieval, Conway's Game of Life (cellular automata), Kings of France (tree processing), etc. Selected draft chapters are already available.
  • Requirements: standard Python 2.7 distribution (first version developed for Windows platforms)
  • Date: 2012-
  • Status: ongoing
  • Availability: Free of charge. Expected release date of beta: first quater 2014.
  • References and resources:
    • Jean-Luc Hainaut. SQLfast Database made easy - Tutorial and Case studies, 600 pages, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 1. Introduction, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 15-30, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 2. Basic scripts, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 31-42, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 4. Creating a database, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 47-58, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 5. Updating data, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 59-70, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 6. More on variables, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 71-84, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 8. Taking decisions, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 87-96, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 9. Reading data, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 97-108, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 10. Looping - The final chapter, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 109-114, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 11. SQLfast expressions, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 115-122, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 12. Output channels, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 123-130, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 13. Dialogues, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 131-150, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 14. Advanced dialogues, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 151-168, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 16. Writing data tables on the output channel, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 173-198, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 25. Metadata - Walking on the wild side, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 265-278, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 25. Metadata - Inception, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 279-290, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 31. Topological sorting, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 307-314, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 32. Conway's Game of Life, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 317-340, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 35. Kings of France - Part 1, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 365-378, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - 36. Kings of France - Part 2, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 379-396, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - Appendix 2. SQLfast sumnary, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 423-454, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - Appendix 3. SQLite transactions, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 455-495, PReCISE Research Center publication, draft version, 2014. [full text]
    • SQLfast Tutorial - Appendix 9. SQLfast internals, chapter from SQLfast Database made easy - Tutorial and Case studies, pages 495-516, PReCISE Research Center publication, draft version, 2014. [full text]

DB-MAIN

  • Type: CASE and MetaCASE environment
  • Description: Graphical CASE tool that supports most database engineering processes. Provides functions for conceptual information analysis, logical design, physical design, code generation, schema integration, schema normalization, quality evaluation, schema mapping, reverse engineering (for a dozen legacy and modern DBMS), schema analysis, code analysis (a.o., depency graphs, pattern searching and program slicing), data analysis, schema transformation. High speed kernel and graphical interface written in C++. New functions can be developed in Voyager 2 (the DB-MAIN external language) or in Java. DB-MAIN includes a method engine and features to extend its meta-schema. It allows the representation of data structures of various paradigms and at any level of abstraction. It relies on the GER (Generic Entity-relationship model) and on transformational operators.
  • Requirements: MS Windows, Linux.
  • Date: 1993-2011+
  • Status: ongoing
  • Availability: Free of charge (except for advanced processors). See below
  • References and resources:


TRAMIS/Master

  • Type: CASE environment
  • Description: TRAMIS/Master was an extension of ORGA distributed by the small French company CONCIS. In particular, the following features were added:
  • support for conceptual analysis
  • a larger transformation toolbox
  • evaluation functions (notably volume estimation)
  • the specification database was implemented in MDBS (a CODASYL-like DBMS)
  • Requirements: MS-DOS; MS Windows 3.11; MDBS
  • Date: 1986-1991
  • Status: discontinued; principles integrated into DB-MAIN
  • Availability: software no longer available
  • References and resources:
    • Jean-Luc Hainaut,Mario Cadelli,Bernard Decuyper and Olivier Marchand. TRAMIS:a transformation-based database CASE tool, in Proceedings of 5th International Conference on Software Engineering and Applications, EC2 Publish., 1992. [description]
    • Jean-Luc Hainaut, Mario Cadelli, Bernard Decuyper and Olivier Marchand. Database CASE Tool Architecture : Principles for Flexible Design Strategies, in Proceedings of the 4th International Conference on Advanced Information System Engineering (CAiSE’92), Lecture Notes in Computer Science, Volume 593, pages 187-207, Springer-Verlag, 1992. [description]


ORGA

  • Type: CASE environment
  • Description: ORGA was a companion CASE tool of the industrial IDA environment developed by the team of professor F. Bodard in the 80's and distributed (as well as ORGA) by METSI, a small French company in Information system design. IDA was mainly devoted to the conceptual specification of various aspects of Information systems. The goal of ORGA was the translation of information conceptual schemas into DDL code according to three data models, namely relational (SQL-87), CODASYL DDL (IDS2) and standard files (COBOL). In modern words, ORGA supported the logical design and code generation processes. Three key features of ORGA:
  • the architecture of ORGA relies on a transformational toolbox. The conceptual/logical conversion was based on three transformation plans, one for each target data model. In addition, the user was allowed to apply elementary transformations to refine the logical schema. In modern words, ORGA supported Model-Driven Engineering.
  • ORGA was developed in C and the specification database was managed through libraries emulating dBASE III structures [1] [2].
  • The methodological principles of ORGA were developed in the (French) book Conception assistée des applications informatiques - Conception de la base de données, published by Masson (now DUNOD) in 1986.
  • Requirements: MS-DOS; hard disk (recommended!)
  • Date: 1984-1985
  • Status: discontinued; principles integrated into TRAMIS/Master then in DB-MAIN
  • Availability: software no longer available
  • References and resources:
    • see TRAMIS/Master


PHENIX

  • Type: Reverse Engineering CASE environment
  • Description: PHENIX was a CASE tool devoted to the reverse engineering of the file structures of large COBOL applications. It was developed with powerful knowledge management systems (which were very popular in the 80's and 90's), a decision which accounted for the poor performance of the code analyzer. In particular, it included:
  • a code analyzer that detected program patterns
  • a large transformation toolbox
  • an inference engine to detect and identify implicit constructs.
  • Requirements: Unix, LeLisp, SMECI, Aida/Masai
  • Date: 1989-1992
  • Status: discontinued; principles integrated into DB-MAIN
  • Availability: software no longer available
  • References and resources:
    • Jean-Luc Hainaut, Catherine Tonneau, Michel Joris and Muriel Chandelon. Transformation-based Database Reverse Engineering, in Proceedings of 12th International Conference on Entity-Relationship Approach (ER’93), Lecture Notes in Computer Science, Volume 823, pages 364-375, Springer-Verlag, 1994. [description]
    • Jean-Luc Hainaut, Muriel Chandelon, Catherine Tonneau and Michel Joris. Contribution to a Theory of Database Reverse Engineering, in Proceedings of the 1st Working Conference on Reverse Engineering (WCRE’93), pages 161-170, IEEE Computer Society, 1993. [description]
    • Jean-Luc Hainaut, Catherine Tonneau, Michel Joris and Muriel Chandelon. Schema Transformation Techniques for Database Reverse Engineering, in Proceedings of 12th International Conference on the Entity-Relationship Approach (ER’93), pages 353-372, E/R Institute Publish., 1993. [description]
    • Michel Joris, R. Hoe, Jean-Luc Hainaut, Muriel Chandelon, Tonneau Catherine and Bodart François. PHENIX : methods and tools for database reverse engineering, in Proceedings of 5th International Conference on Software Engineering and Applications, EC2 Publish., 1992. [description]
    • Jean-Luc Hainaut. Database Reverse Engineering, Models, Techniques and Strategies, in Proceedings of the 10th International Conference on the Entity-Relationship Approach (ER’91), pages 729-741, ER Institute, 1991. [description] [full text]


VisiComp

  • Type: Graphical computer simulator
  • Description: VisiComp (name inspired by VisiCalc) is a graphical simulator for an educational computer. This computer has a very simple architecture: a main memory of up to 100 cells (each accomodating a signed 5-digit number), the standard handful of registers (P-counter, instruction register, logical register, accumulator + its extension register), 37 instructions organized into 7 instruction families, 10 addressing modes, a sequential input device, a sequential output device, bootstrap (kind of MBR). The simulator also includes a monitor that manages and controls all the parts of the computer (interactive + script interpreter), configuration files, input file loader, etc. The computer has been used to illustrate architecture and programming principles such as Von Neuman architecture, basic program structures, I/O buffering, recursion, relocatable programs, bootstrapping and even a complete business application (order management and invoicing with 3 files, almost as powerful as SAP!) The simulator and its additional components required at runtime no more than 12 KB (12,000 bytes!) in RAM. It was developed in TRS-80 Basic then in CP/M Basic.
  • Requirements: TRS-80 Model 1 - Level 2 (16 KB RAM); CP/M; BASIC language processor;
  • Date: 1982
  • Status: discontinued
  • Availability: Source code available on paper
  • References and resources:
    • Jean-Luc Hainaut, THE VISIBLE COMPUTER - A graphical computer simulator. Technical report, 1982. 75 pages. [full text] This document results from the scanning of poorly printed pages. It is incomplete and probably includes too many errors. In addition, it will probably be considered fairly naive. Consider that it was written 30 years ago and that computer technology has considerable evolved since then, to such an extent that is has become quite complex and impossible to describe in detail to plain lay readers.
    • Source code available on paper.
    • Note: just for the fun, I have developed a new graphical interface for Visicomp in Python/Tkinter. It would take no more than 2-3 weeks to add the logic behind. Anyone interested?


NDBS

  • Type: Database Management System
  • Description: NDBS (Network Database System) is an educational database management environment allowing Turbo-Pascal programs to manage and use complex data in an efficient, though very intuitive, way. NDBS comprised a runtime library (database handler), a DDL compiler, a 4GL Query Language, a data dictionary, a report generator, a SQL/NDBS converter, an import/export tool, etc. As far as we now, the only industrial use was by an Indian Statistics department, which developed several applications programs based on NDBS. The last version (under the name Pyramid) was developed by D. Rossi, then Master student in the University of Namur. Two original aspects: (1) the data model was a variant of the ER model, (2) the physical engine was a fairly strict implementation of the principles developed in the course of Database Technology I gave in the 80's.
  • Requirements: Windows; written in Turbo-Pascal
  • Date: 1986-1996
  • Status: discontinued
  • Availability: source code (but I must search floppy disks for it).
  • References and resources:
    • [TR86-01]Jean-Luc Hainaut, NDBS - A simple database system for small computers. Technical report, 1986. 144 pages. [full text] This text has been recovered from various materials written in the eighties (Mac Word documents) and roughly assembled into a unique FrameMaker document. The result would require in-depth polishing, but, to be frank, I currently have no spare time to carry out this task. Sometimes in the near future perhaps!


SQL-Script Interpreter

  • Type: Interpreter for an SQL-based scripting language
  • Description: Empty Access application (*.mdb) that allows users to execute SQL scripts on any database. Includes a simple dialog box with two buttons: select a script file and execute it. For information, MS Access provides two ways to execute SQL statements: as Access queries (simple but single queries only) and embedded in VB programs (powerful but complex). This tool allows one to execute in one click a script made up of a sequence of SQL statements, but also much more complex scripts with variables, macros, loops, alternatives and interaction with users. This application has been frozen in 2012 since the development of SQLfast (see above).
  • Requirements: Microsoft Access
  • Date: 2005-2011+
  • Status: ongoing
  • Availability: available online
  • References and resources:


SPHINX

  • Type: Database Management System, Natural Language interface, Data dictionary
  • Description: SPHINX is a database management system based on the ER model. It was developed in the 70's as a result of large national project devoted to the development and management of large administrative databases. SPHINX comprised several components:
  • a runtime database handler
  • a high-level DML language integrated to COBOL
  • NUL: an incremental user-oriented query language
  • a meta-system (based on SPHINX)
  • Requirements: Siemens BS-2000; SESAM data manager (one of the first schema-less inverted-file data manager);
  • Date: 1971-1977
  • Status: discontinued
  • Availability: software no longer available
  • References and resources:
    • Baudouin Le Charlier and Jean-Luc Hainaut. Modèles, Langages et Systèmes pour la conception et l’exploitation de bases de données, in Actes du congrès AFCET 1978, pages 179-189, Editions Hommes et Techniques, 1978. [description] [full text]
    • Claude Deheneffe and Henri Hennebert. NUL: A Navigational User’s Language for a Network Structured Data Base, in Proceedings of the 1976 ACM SIGMOD International Conference on Management of Data, pages 135-142, ACM, 1976. [description] [full text]
    • Claude Deheneffe, Henri Hennebert and Walter Paulus. A Relational Model for a Data Base, in Proceedings of the IFIP congress 74, pages 1022-1025, North-Holland, 1974. [description] [full text]
    • Jean-Luc Hainaut and Baudouin Le Charlier. An Extensible Semantic Model of Data Base and Its Data language, in Proceedings of the IFIP Congress 74, pages 1026-1030, North-Holland, 1974. [description] [full text]
    • [TR78-01]Jean-Luc Hainaut, Baudouin Le Charlier, et al., Système de conception et d'exploitation de bases de données - Volume 1 : Modèles et Langages. Rapport final du projet CIPS I2/15, Institut d'informatique, Université de Namur, 1978. [full text]
    • [TR78-02]Jean-Luc Hainaut, Baudouin Le Charlier, et al., Système de conception et d'exploitation de bases de données - Volume 2 : Manuel de référence des langages. Rapport final du projet CIPS I2/15, Institut d'informatique, Université de Namur, 1978. [full text]
    • [TR78-03]Jean-Luc Hainaut, Baudouin Le Charlier, et al., Système de conception et d'exploitation de bases de données - Volume 3 : Une implémentation du modèle d'accès. Rapport final du projet CIPS I2/15, Institut d'informatique, Université de Namur, 1978. [full text]
    • [TR78-04]Jean-Luc Hainaut, Baudouin Le Charlier, et al., Système de conception et d'exploitation de bases de données - Volume 4 : Le système SPHINX, Utilisation, fonctionnement et description interne. Rapport final du projet CIPS I2/15, Institut d'informatique, Université de Namur, 1978. [full text]
    • [TR78-05]Jean-Luc Hainaut, Baudouin Le Charlier, et al., Système de conception et d'exploitation de bases de données - Volume 5 : Exemples d'application. Rapport final du projet CIPS I2/15, Institut d'informatique, Université de Namur, 1978. [full text]
Outils personnels