
Case study 34 34

Blockchains

In this study, we examine some fundamental aspects of blockchains,
particularly the security of data and the way(s) it is achieved through
cryptographic transformations. Basically, a blockchain is a historical
database in which the description of operations, generally called trans-
actions, are stored in chronological order. Once recorded, the data of a
transaction can never be deleted nor modified.

The document first introduces the elements of cryptography necessary
to build a blockchain, notably secure hashing, and symmetric and
asymmetric key encryption. Then, it describes the distinctive aspects of
blockchains independently of its application domain and applies them
to cryptocurrencies. Finally an experimental toolbox, comprising a
collection of functions designed to manage and explore blockchains, is
built step by step.

Keywords. blockchain, blockchain explorer, proof of work, distributed
database, cryptocurrency, trust, security, cryptography, RSA, AES,
secure hashing

34.1 Introduction

Blockchain is certainly one of the most popular techniques currently discussed, both
in the general public and in scientific circles. Initially known as a cryptocurrency
implementation platform, its applications have quickly spread beyond the financial
world. Now applied (or suggested to apply) to the most diverse fields of human

2 Case study 34 • Blockchains

Printed 28/11/20

activity, blockchain is considered by some futurologists as the disruptive technology
that can lead to major societal changes.

Far from these speculations, whose validity has yet to be demonstrated, this study
has a particularly modest objective: to illustrate in practice the technical bases of
blockchain technology.

In short, a blockchain will be seen a a massively replicated, secure, append-only,
historical database supported by a peer-to-peer network. The complexity of its data
structures and management rules makes blockchain a remarkable application of
database technology. That alone justifies a full chapter in this series of case studies

Since blockchains make intensive use of cryptographic operations, we give in
Section 34.2 a very short introduction of those used in this technology. In Section
34.3 we recall the principles of blockchains, that we apply to cryptocurrencies in
Section 34.4. The remaining of this study (from Section 34.5) is devoted to the anal-
ysis and implementation of some of the main functions of a didactic blockchain
management system.

34.2 Elements of cryptography

Cryptography is a set of techniques devoted to the transformation of explicit infor-
mation into a meaningless string of bits. Their main objective is to securely store or
communicate information. The concept of security encompasses several issues, such
as preventing unauthorized third parties to read the information, checking its integ-
rity or preventing parties to contest its authenticity. We will briefly describe the prin-
ciples of three important cryptographic techniques used by blockchains. In this
presentation, we will call message any kind of source user data that we intend to
process through cryptographic techniques: text, file, picture, program, etc.

Secure hashing

Hashing is the derivation of a (seemingly) random fixed-length bit string from a
source message. This derivation in performed by a hash function (let us call it h) that
implements complex mathematical operations. The resulting bit string is called the
hash or the digest of the message. A good hash function must satisfy the following
properties:

1. h is deterministic: applying h to source message M always provides the same
result.

2. h is not invertible: there is no way to compute message M from its hash. In oth-
er words there is no function g such that M = g(h(M)).

3. h is injective: applying h to two different messages yields two distinct hashes:
if M1 ≠ M2, then h(M1) ≠ h(M2). This property is also called collision resis-
tance.

3

Printed 28/11/20

One of the most popular hash function is SHA256, that produces hashes of 256 bits.
It is available in the SQLfast library under the name hash(). The fact that (good) hash
functions have no inverse is of course important but it does not prevent attackers to
try to crack a hash, that is to guess the (unknown) source message of a (known) hash
through a brute-force attack such as that of Script 34.1, where messages(N) is an
iterator that yields successive bit strings of length N, from 'ob0000...0000' to
'ob1111...1111', and Hash is the hash of which one tries to guess the source.

Script 34.1 - Guessing the source message of a known hash through a brute-force
method

Three comments on this approach:
– The number of potential messages to check is extremely large: 2N for each

value of N (generally, we do not know the length of the actual message), so that
the exploration is not feasable with current computing technology. A machine
capable to compute one billion hashes per second would take about 300 years
to examine all the combinations of 64 bits, i.e., about 10 printable ASCII char-
acters.

– Property 3 defines perfect hash functions. Actually, there is no way to ensure
that, therefore, there is no guarantee that the source message found with this
method is the true one, intended by the sender. Good functions make collisions
(the fact that two distinct messages are assigned the same hash) extremely rare,
in such a way that they are considered practically injective. Such good func-
tions are described as secure, hence the name secure hash algorithm or SHA.

– More refined cracking techniques could be based on the knowledge of parts of
the original message, such as its length or a constant signature or introduction.
However, a property of secure hash functions makes such hints useless: two
almost identical source messages produce very different hashes.

This is illustrated by the following experiment: computing the hash of these
two messages, where only the case of the first letter is different,

 compute hash1 = hash('what is the best database language?');
 compute hash2 = hash('What is the best database language?');
 write $hash1$;
 write $hash2$;

def guessSource(Hash):
 # Try messages of length 1 to 1000
 for N in range(1,1001):
 # Create an iterable object from class 'messages'
 Nmessages = messages(N)
 for source in Nmessages:
 if hash(source) == Hash:
 return source
 return ''

4 Case study 34 • Blockchains

Printed 28/11/20

produces these very different hashes (displayed in hexadecimal):

 e6b67be466c63231af78a4bece714def58f33cbc48911b7319579cee242b0415
 d9879a0017d31dd03144ce0f4be8e0f1b46d503c27c1ee4c87c49d4ee49548c1

It is important to understand that hashing does not preserve the contents of the
source message, contrary to the next two techniques.

Symmetric key cryptography
Encryption is a reversible transformation of a source message that produces a mean-
ingless byte (or character) string. This transformation is performed by a complex
algorithm based on an encryption key. The encrypted message can be securely trans-
mitted or stored. To recover the source message, the encrypted message must in turn
be transformed by a decryption algorithm using an decryption key.

In symmetric key cryptography the encryption and decryption keys are the same.
To protect the encrypted messages, this key must be kept secret, only known by the
sender and the recipient(s) of the messages.

The SQLfastUDFlib library includes two primitives to encrypt and decrypt
messages. They are particularly fit to process plain character strings. The following
script illustrates their usage:

 set message0 = What is the best database language?;
 set secretkey = my secret key;
 compute crypto = encrypt('§message0§','§secretkey§');
 compute message1 = decrypt('§crypto§','§secretkey§');
 write $message0$;
 write $crypto$;
 write $message1$;

With the following result, showing that the original message has been preserved:

 What is the best database language?
 xOGB54XM5YXoiNCF29LslJPJxObG1oHeypnZ2o7a2sTZyrM=
 What is the best database language?

Formally, if M is the source message and K the symmetric key:

decrypt(encrypt(M,K),K) = M

To process pure binary messages, functions generateSYMkey, encryptSYM and
decryptSYM of LStr.py library are more appropriate. Function generateSYMkey
generate a pseudo-random byte secret key of given length (expressed in base64).
The usage of these functions is illustrated here below. The length of the key is 12
bytes (i.e., exactly 16 in base64).

5

Printed 28/11/20

set message0 = What is the best database language?;
 function secretkey = LStr:generateSYMkey 12;
 function crypto = LStr:encryptSYM {$message0$},$secretkey$;
 function message1 = LStr:decryptSYM {$crypto$},$secretkey$;
 write $message0$;
 write $secretkey$;
 write $crypto$;
 write $message1$;

With the expected result:

 What is the best database language?
 ue9ihdMB7hnUC/sn
 zM2a3YjNwGKr0NN1pZTm4pXJmt3Jxq61nIjatrGW6M_cyng=
 What is the best database language?

The SQLfast functions are based on the Vigenère symmetric key algorithm. This
technique is particularly simple and the encryped messages are reasonably hard to
crack. More secure algorithms are available such as the Advanced Encryption Stan-
dard (AES). The main weakness of symmetric cryptography is that all the senders
and recipients must keep the key secret. Once the secret key has been generated, it
must be distributed over a secure channel, for example through asymmetric encryp-
tion.

Asymmetric public key cryptography
Asymmetric encryption uses two keys. The public key is used by all the senders who
intend to send messages to a recipient. This key is specific to the recipient. It is
public and can be found in some sort of public directory. When the recipient receives
a message that has been encrypted by her public key, she can decrypt it with a
second key, her private key. Only the recipient possesses this private key, which is
then easier to protect.

To perform asymmetric encryption, SQLfast offers three functions similar to
those of symmetric cryptography: generateRSAkey (that yields both public and
private keys), encryptRSA and decryptRSA of LStr.py library. They use RSA, among
the most popular asymmetric cryptographic algorithms. The usage of these func-
tions is illustrated in the following snippet. The length of the public key is 420 bits
(converted in base64).

set message0 = What is the best database language?;
function secretkey,publickey = LStr:generateRSAkeys 420;
function crypto = LStr:encryptRSA {$message0$},$secretkey$;
function message1 = LStr:decryptRSA {$crypto$},$publickey$;

Formally, if M is the source message, P the public key and V the private key:

decryptRSA(encryptRSA(M,P),V) = M

6 Case study 34 • Blockchains

Printed 28/11/20

A major drawback of the asymmetric technique is that the public key must be at least
as long as the longest message to encrypt. To overcome this problem, one can
encrypt long messages by slices the length of the key or to use symmetric encryption
and to encrypt the symmetric key through an asymmetric technique.

Blockchain management makes intensive use of asymmetric cryptography to
verify the authenticity of transactions. However, the roles of sender and recipient
are inverted. Only the sender is allowed to encrypt a message but all the members of
the blockchain, the recipients, may decrypt it. So, when a pair of (public, private)
keys are generated by the RSA algorithm, the originally public key is used as a
secret key, which must be carefully protected by the sender, while the originally
private key is made public, allowing everybody to decrypt messages. To summarize:

34.3 The blockckain paradigm

Basically, considered as a service, a blockchain is a journal, or a ledger, in which a
community of members securely record information on operations of interest to
them. Quite often, these operations concern the creation, modification and exchange
of critical resources such as money, energy, goods, services, stock market securities
or real estates.

In the (so far usual) real world, such operations are controlled by trusted interme-
diaries such as banks, public administrations, stock exchange authorities, lawyers or
notaries public.

The most significant characteristic of blockchains is that there is no such interme-
diaries in charge of controlling the legitimacy of the operations. Each member is
responsible for the validity of her operations, but also of the validity of the opera-
tions carried out by all the other members of the community.

This rises the issue of trust. As a member of the community, how can I be certain
of the validity of an operation? When a house is being sold, is its seller really the
owner this house? When a customer pays me the product I sent her, is the balance of
her account sufficient?

In addition to the validity of the operations themselves, I must be confident that
the information recorded in the ledger will never be falsified; in other words, that
the content of the blockchain never can be altered once it has been recorded (it must
be immutable).

The trust in the information of a blockchain is ensured by a set of rules that define
the way operations must be recorded. These rules form the protocol of this block-
chain. Simply stated, the blockchain technology must meet the following
conditions:

standard blockchain
public key secret key
private key public key

7

Printed 28/11/20

– Reliability: the operations described in the blockchain are definitively effective
as soon as they have undergone a validation process.

– Non falsifiability: data can be appended to the blockchain, but, once recorded,
they can no longer be deleted or modified.

– Transparency: the recorded data are public; all members of the community can
review them and check their validity.

– Robustness: the blockchain must resist all kinds of attack, be they accidental or
intentional.

– Anonymity: the identity of the members involved in an operation is protected,
except in some special situations, such as transactions involving a bank (to
prevent from money laundering), this identity is mentioned via a meaningless
pseudonym.

The absence of a trusted third party has an important consequence: there is no
central service responsible for storing the blockchain. It is simply copied on the
computer of each member of the community, thus contributing to its robustness.

Members
A member who joins the community receives three specific information items:

– an unique identifier, which is a random character string (principle of
anonymity) that will be used to identify her in any transaction she will be a
partner of,

– a secret key with which she will encrypt her data,
– a public key with which all the members of the community can decrypt these

data.

These keys allow data to be securely recorded in the blockchain through asymmetric
cryptography. The couples (identifier, public key) are public and can be known by
the community, or at least by a part of it.

Transactions
Each operation related to the resource managed by the blockchain is executed as a
transaction. The properties of the transaction are recorded in the blockchain as soon
as it has been executed, but it will be effective only when it is validated.

Let us suppose that I sell my house to a buyer for 150,000€, the data of this trans-
action are recorded in the blockchain: my id, the id of the buyer, the id of the house,
the price we agree upon and the date. The sale will be effective when these data
have been validated: I am the owner of the house, the house is free from any debt,
the price is plausible, the buyer exists and this amount is available on her account.

When the data of the transaction have been recorded in the blockchain, they are
vulnerable, notably prone to all kinds of fraud, such as a member discretely modi-

8 Case study 34 • Blockchains

Printed 28/11/20

fying some data. For example, my buyer could be tempted to lower the value of the
house to, say, 125,000€. To prevent this fraud, I modify the transaction in this way:

– When all the data of the transaction have been collected (let us call them T), I
encrypt them with my secret key (S); the result is the signature of the transac-
tion:
signature = encrypt(T,S)

– I add this signature to the transaction data.
– I make this augmented transaction public.

Therefore, every member of the community can examine this transaction, decrypt its
signature, compare the result with the source data and conclude that the source data
are authentic or corrupt. Denoting by P the public key associated to S, T is consid-
ered correct if:

decrypt(signature,P) = T

Since only the creator of the transaction can encrypt the data, there is no way for a
fraudster to alter the source data.
To summarize,

– a transaction describes an operation,
– it is complemented by its signature
– it is distributed to the members of the blockchain,
– who can validate it,

then it becomes effective (or rejected). However, as we will see, recording a transac-
tion in the blockchain is a bit more sophisticated.

Blocks and blockchains
For reasons that will be discussed later, when a sufficient number of transactions
have been created, they are grouped together to form a block. This block is assigned
an identifier, that becomes a part of it, as well as the identifier of the last block that
has been created. So, each block (but the first one) references the previous block,
thus forming a chain of blocks, hence the term blockchain.

The identifier of a block is computed as the hash of its contents, that is:

Bbody = trans1 + trans2 + ... + transn + rectime + previous
Bhash = hash(Bbody)
block = Bhash + Bbody

where transi is the ith transaction collected since the creation of the preceeding
block,
n is the standard capacity of a block,

9

Printed 28/11/20

rectime is the timestamp of the block,
previous is the hash of the previous block,
Bhash is the identifier of the block being built,

The quality of the hash function, based on SHA256, ensures that there will be no
collision between two blocks, at least in a forseeable future!

The block structure provides a second level of security against data corruption,
whether accidental or intentional.

Suppose that the creator of a transaction wants to fraudulently modify it, for
example to increase the price of the house he sold. Since he possesses the secrete
key of the transaction, he can modify the transaction data, recalculate the signature
then replace the transaction in its block, hoping that no one will notice.

Unfortunately, the block structure makes the task a bit more complex. The hash
of the block now is invalid and must be recalculated then replaced in its block.
Therefore, the next block becomes invalid, since it references the fraudulent block.
It must be updated as well, and so on until the last block of the chain has been modi-
fied. Worse, all the members of the community have a copy of these blocks. The
fraudster therefore has no choice but to ask them to replace these blocks with the
new ones. Hoping that nobody will notice!

Validation of a block

The last step of the protocol consists in validating the block we have built and
publishing it to make it accessible to all the members of the community. This task is
fairly tricky and will be best explained in the specific application domain of cryp-
tocurrencies.

34.4 Application: cryptocurrencies

One of the most popular applications of blockchains is cryptocurrencies, and more
specifically bitcoins, managed through the Bitcoin protocol. When I want to buy a
book that cost 20 €, I usually transfer this amount of money from my account to that
of the bookshop. For this, I make use of the services provided by a bank, which both
(me and the bookshop) consider a trusted intermediary.

 The objective of the Bitcoin protocol is to allow us to execute such operations
without relying on the services of a bank or of any other intermediary such as
PayPal. If the bookseller and myself are members of the same cryptocurrency
community, we just have to record a money transfer transaction in the blockchain of
our community.

Following the description given in the preceeding section, such a transaction will
normally include my id, the id of the bookseller, the price of the book and the date of
the transaction. And of course the signature of these data.

10 Case study 34 • Blockchains

Printed 28/11/20

Note. In the following, we describe a protocol similar to that of Bitcoin but strongly
simplified, in order to comply with the didactic objective of this series of case
studies. Motivated readers are invited to refine this protocol to include some
specific aspects of Bitcoin, such as multi-output transactions and miner
conflicts.

The member id
When joining the blockchain system, each member receives a public key through
which all the members can decrypt the signature of his transactions. This key is
unique and therefore could be used to identify the member. However, the public key
is a fairly large character string, so that a new, shorter, identifier is derived from it by
hashing this key. In the Bitcoin protocol, the member id, called Bitcoin address, is
160 bit long.

The transactions
First of all, some terminological clarification: in addition to member and member id,
we will use the terms account and account id. A member is the agent who creates
and manages an account. There is a one-to-one relationship between members and
accounts: each member manages one account and each account is managed by one
member. However, the blockchain only knows accounts. We will keep the concept
of member when necessary, notably to give operations an intuitive interpretation.

To make things concrete, we consider three types of transactions.
– registering a new account. Input: recording date. Output: an account id, a

secret key and a public key.
– depositing an amount of money on an account. Input: recording date, id of the

source account and the amount deposited.
– transferring an amount of money from a source account to another account.

Input: recording date, id of the source account, id of the recipient account and
the amount transferred.

When recording a transaction, we add to its base data a transaction id and its signa-
ture, computed with the secret key of the member who initiated the operation.

Block building
When a transaction has been recorded, it is sent to the members of the blockchain
who are in charge of validating them. These members are called miners, for a reason
we will explain below.

First, miners verify that the data of each transaction are not corrupt by comparing
them with the data of the decrypted signature. Then, they analyze the components of
the transactions to verify that they are semantically correct: for example, the
accounts ids reference accounts that really exist and the amount of money is avail-
able, therefore preventing a member to spend more than the balance of his account.

11

Printed 28/11/20

When the transactions a miner has received are proved to be valid, they are grouped
to form a block. This block is signed with its hash and sent to the other members of
the blockchain to (tentatively) become its new last block. This step is quite fast and
does not require powerful machines.

Finally, we note that the hash of a block is guaranteed to be unique and therefore
can be used as the identifier of the block in its blockchain.

Block mining
A first problem that arises is that all the miners carry out the same task, so that many
candidate blocks are broadcasted to the community almost at the same time. Hence
the dilemma: which one to choose? In a context in which there is no central
authority, the idea is simple, the first one is the winner. To make this rule effective,
the process of block building must be slowed down, in such a way that the candidate
blocks are received in a (seemingly) random way.

Another problem is that, due to the ease with which this task can be carried out,
quite many members can pretend to the status of miner, therefore opening the door
to the risk of inappropriate behaviour and fraud. It is important to limit the number
of miners to those who really are interested in, and therefore willing to contribute to,
the proper functioning of the blockchain. Therefore, the miners are required to
prove that they enjoy a certain level of resource that gives them an outstanding
status among the community that, in turn, grant them its trust. The most popular of
these resources are their computing power (the miner must show his Proof of work)
and their notoriety1 (the miner must show his Proof of stake). We will describe the
first of them.

To solve these problems, the blockchain protocol imposes a special constraint on
the hash with which the block is signed: the block must be accompanied by a short
bit string, called the nonce of the block, that, if appended to the block, produced a
hash the k first bits of which are zeroes.2 Satisfying this constraint consists in
finding a nonce. There is no clever way to find it: one just has to try all the combina-
tions of k bits until one of them produces a good hash. That is:

body = transactions + rectime + previous
nonce is valid if

hash(body + nonce)[0:k] = '0b000...000'

This nonce and the hash it yields are added to the block, which is then sent to all the
members as the suggested last block of the chain. Figure 34.1 illustrates the structure
of a blockchain by showing the contents of two successive blocks. In each block,
Bhash denotes the valid hash, used as the block identifier.

Checking that blocks are valid is quite fast, so that every member, whether miner
ou not, can verify that a block is not corrupt. On the contrary, finding a valid nonce

1. The notion of notoriety can be quite diverse: the current balance of your account, the average
balance in the last year, your activity in the blockchain, your social position, etc.
2. In 2019, k = 72

12 Case study 34 • Blockchains

Printed 28/11/20

is very expensive in computing time. In particular, it requires a large computing
infrastructure. So, broadcasting a block with a valid nonce is a proof that one has
worked very hard. In other words, a valid nonce is a proof of work that any other
member can verify.

To make things even more challenging, only the first miner who finds a valid
nonce wins the competition. We could wander what may motivate miners to
perform such a hard and expensive work for such an uncertain result. The answer is
both simple and universal: money! The winner receives a certain amount of crypto-
money as compensation for his work. Hence the name of miner: working hard to
hopefully find, from time to time, some small golden nugget!

Figure 34.1 - Fragment of a blockchain

This description of the blockchain mechanisms is just an introduction to the main
principles. It leaves out many problems and their solution. More details can be found
in countless publications both in libraries and on the web. As far as this study is
concerned, we now know enough to start the implementation of some components
of a simplified prototype blockchain.

34.5 The BLOCKCHAIN toolbox

The programs that implement a blockchain system in the real world form a complex
distributed system. In the context of this series of case studies, the objective of
which basically is didactic, it would not be realistic to develop a full-fledged block-

transactions <transaction body><transaction signature>
<transaction body><transaction signature>
<transaction body><transaction signature>

Bhash 0000000000a42bde42835f0d8e9d5cc2a033dbac989a9e15cff6bf6a84320a25

nonce 74f02ca6

previous 00000000007caf780c4a096b929dd4fa9273f1b7e54a8824cc86b37801011e3e

rectime 2019-02-17 21:03:56

transactions <transaction body><transaction signature>
<transaction body><transaction signature>
<transaction body><transaction signature>

Bhash 00000000007caf780c4a096b929dd4fa9273f1b7e54a8824cc86b37801011e3e

nonce 74f02ca6

previous 0000000000d4fa9b73fb7f54a8c24c8b3780b11e37cf78b0ca09b9c2a03dbac90

rectime 2019-02-17 16:37:04

transactions <transaction body><transaction signature>
<transaction body><transaction signature>
<transaction body><transaction signature>

Bhash 0000000000a42bde42835f0d8e9d5cc2a033dbac989a9e15cff6bf6a84320a25

nonce 74f02ca6

previous 00000000007caf780c4a096b929dd4fa9273f1b7e54a8824cc86b37801011e3e

rectime 2019-02-17 21:03:56

transactions <transaction body><transaction signature>
<transaction body><transaction signature>
<transaction body><transaction signature>

Bhash 00000000007caf780c4a096b929dd4fa9273f1b7e54a8824cc86b37801011e3e

nonce 74f02ca6

previous 0000000000d4fa9b73fb7f54a8c24c8b3780b11e37cf78b0ca09b9c2a03dbac90

rectime 2019-02-17 16:37:04

13

Printed 28/11/20

chain software. We will rather develop a set of independent functions sharing a data-
base representing an elementary but representative blockchain.

The application chosen is that of a cryptocurrency based on the presentation of
Section 34.4. The function set includes the three basic transactions of registering
an account, depositing an amount of money and transferring an amount of
money from a source account to a recipient account. These transactions will then be
processed by a validation function and gathered into blocks, including their
mining. To these functions, that form the basis of a blockchain application, we add
a set of visualization functions that will allow us to examine the data with different
degrees of granularity.

 The basic mining function will be discussed and implemented, but we will leave
aside the aspects of distribution (data replication in each member machine in partic-
ular), reward (remuneration of miners), competition (the first miner "takes it all") or
conflict resolution. Similarly, transfer transactions between accounts are limited to a
single recipient account (no multiple ouputs). These extensions can be developped
without problem once a solid basic architecture has been defined.

Following the approach of the case studies series, a blockchain will be designed
and implemented as a relational database application, naturally developed in the
SQLfast language and environment.

34.6 The database

The main data structures include three public tables, containing information on the
transactions, the blocks and the public keys of the members.

34.6.1The transactions (table BTRANSACTION)
There are three types of transactions: registering a new account (Operation =
REGISTER), depositing an amount of money on an account (Operation = DEPOSIT)
and transferring an amount of money from a source account to a recipient account
(Operation = TRANSFER) .

Let us consider the example of a transfer transaction of an amount of 100 units of
money from Mary's account to Luke's account. Figure 34.2 shows how we will code
this information. It indicates the type of operation, (Mary’s) source account id,
(Luke’s) recipient account id, the amount of money transferred, the recording date
of the transaction and finally the signature of the transaction (only a part of the
signature is shown).

To this basic data, we add the reference of the block (its Bhash) in which the
transaction will be inserted. Then we assign to each transaction an id (unique in the
blockchain) formed by the id of the source account to which we add the recording
date. This pattern is valid provided that the transactions initiated by an account are
created on distinct dates, which is not a particularly hard constraint since this date is
detailed to the second.

14 Case study 34 • Blockchains

Printed 28/11/20

Figure 34.2 - Data describing a TRANSFER transaction

Finally, in order to facilitate experimentation, transactions will be provided with a
short numerical identifier, called a transaction key, which will be assigned automat-
ically. This identifier is obviously not part of the blockchain model.

These components are translated into the BTRANSACTION table3, the structure of
which is shown in Script 34.2. Column TransKey will contain the transaction key,
TransID the transaction id, Bhash the reference of the block. The other columns have
an obvious meaning.

Script 34.2 - Schema of the table describing the transactions

34.6.2The blocks (table BLOCK)
A miner creates a block as soon as a sufficient number of candidate transactions
have been received. Basically, a block consists of a block identifier, a sequence of
transactions, its creation date and the identifier of the previous block.

The identifier of the block is obtained by hashing its content to which a nonce is
added. This nonce will be represented in the BLOCK table as a long integer repre-
sented by a decimal character string. The hash is translated into base64 for
convenience. Finding this nonce, which is particularly time-consuming, constitutes
the proof of work of the block validation. In the standard version of the toolbox, k =
20, which requires a mining time from 5 to 30 seconds for blocks of 5 transactions.

3. 'TRANSACTION' would have been a better name. Unfortunately, it is an SQL reserved word!

create table BTRANSACTION(
 TransKey integer not null primary key autoincrement,
 TransID varchar(72) not null unique,
 Bhash varchar(48) references BLOCK(Bhash),
 Operation char(12) not null,
 Source varchar(48),
 Recip varchar(48),
 Amount decimal(16,10),
 RecTime datetime not null,
 Signature varchar(512) not null);

Operation: TRANSFER
Source: FT7UzFgSpMmNsnlet_ooAKV4wWTyJAaLrnYH6TRtIBw=
Recip: QWA7QEjrvrsg1lpALJi34f8Ksrzb0ANfa5tqsylm7Xw=
Amount:100
RecTime: 2019-05-23 15:58:3
Signature: C75d4HLpm9STKHj[..]h-blt2uCmMM_mfK

Operation: TRANSFER
Source: FT7UzFgSpMmNsnlet_ooAKV4wWTyJAaLrnYH6TRtIBw=
Recip: QWA7QEjrvrsg1lpALJi34f8Ksrzb0ANfa5tqsylm7Xw=
Amount:100
RecTime: 2019-05-23 15:58:3
Signature: C75d4HLpm9STKHj[..]h-blt2uCmMM_mfK

15

Printed 28/11/20

The maximum number of hash computations is 5,000,000. These parameters can be
changed if needed.

Transactions are not integrated into the block as usually described in the literature
(see Figure 34.1) but are associated with it via foreign key Bhash in table BTRANS-
ACTION. We will simply indicate the number of transactions associated with the
block.

A block that has just been created is submitted to the community of miners. At
this stage, it is only a project that has yet to be validated and selected as the official
block. Blocks are characterized by their status, which indicates their validation
status: 0 for a validated block and 1 for a selected block.

Just as we have done for transactions, once again to facilitate experimentation,
we will associate a numerical identifier, called a block key, to the blocks. The trans-
lation into a table structure is illustrated in Figure 34.3. Column BlockKey is the
block key, Bhash the hash of the block, and therefore its id, Transact is the number
of transactions.

Script 34.3 - Schema of the table the blocs

34.6.3The public key directory (table DIRECTORY)
To transfer an amount of money to a recipient account, we are supposed to know its
id, just as, to make a bank transfer, we need to know the number of the recipient
account. To validate a transaction we must decrypt its signature to verify that it
corresponds to the values of the different fields of this transaction. This decryption is
performed by the public key of the creator of the transaction, which is the member
who owns the source account.

We must therefore create a directory that, for each account id, provides its public
key. This directory is stored in the DIRECTORY table whose schema is shown in
Script 34.4. A column has been added indicating whether (1) or not (0) the account
owner is a miner.

create table BLOCK(
 BlockKey integer not null primary key autoincrement,
 Bhash varchar(48) not null unique,
 Transact integer not null,
 Nonce varchar(32),
 RecTime datetime not null,
 Status integer not null default 0,
 Bprev varchar(48) references BLOCK(Bhash));

16 Case study 34 • Blockchains

Printed 28/11/20

Script 34.4 - Schema of the table providing public keys

34.7 Experimental data

The data in the BTRANSACTION, BLOCK and DIRECTORY tables are public, and
therefore accessible to all members of the blockchain.

To these so-called functional data (i.e., necessary for the operation of the block-
chain), we must add those that will allow us to experiment with the concepts of
blockchain. These data, which do not exist in real implementations (we represent
them in red in the table schemas), allow us to experimentally perform, in a simple
and intuitive way, the different operations on our block chain. We will call them
experimental data.

First, it should be noted that tables BTRANSACTION and BLOCK already contain
experimental data in the form of the transaction keys (TransKey column) and the
block keys (BlockKey column).

The data of the accounts we will play with will be stored in ACCOUNT table. An
account has an id generated by hashing its public key and displayed in base64 char-
acter code. Memorizing and manipulating these long and meaningless character
strings will not be particularly comfortable. For this reason, we associate with each
account a nickname easy to remember, for example a person name, which we call
private name (PrivName column). So, we will describe a transfer operation in this
way:

Mary transfers an amount of 100 to Luke's account

obviously more natural than its technical equivalent:

an amount of 100 is transferred
from account FT7UzFgSpMmNsnlet_ooAKV4wWTyJAaLrnYH6TRtIBw=

to account QWA7QEjrvrsg1lpALJi34f8Ksrzb0ANfa5tqsylm7Xw=
When an account is created, a pair of keys are generated to compute (by the secret
key) and then decrypt (by the public key) the signature of transactions. In a real
implementation, only the owner of the account knows its secret key, which he must
store and protect with the greatest care. In this experimental prototype, we will play
all the roles: account creator, source, recipient and miner. We will therefore need to
know the secret keys of all the members of the blockchain!

These experimental data are stored in table ACCOUNT. It contains the account id,
the private name, the secret key and the time the data of the account were recorded

create table DIRECTORY(
 AccountID varchar(64) not null primary key,
 PublicKey varchar(1400) not null,
 Miner integer not null default 0);

17

Printed 28/11/20

(Script 34.5). There is no need to store the public keys since they already are avail-
able in table DIRECTORY.

Script 34.5 - Schema of the table describing the accounts

34.8 Account registration

Creating an account leads, on the one hand, to the creation of an RSA key pair
(secret key and public key) allowing its owner to execute transactions on this
account and, on the other hand, to the creation of a transaction that formalizes the
existence of this new account.

The whole operation comprises five steps, shown in Script 34.6:

Script 34.6 - Script creating a new account (excerpts)

1. Computing the secret and public keys. We use function generateRSAkeys of
LStr library. The size of the secret key must be greater than or equal to the size
of the strings it must encrypt. A 1700-bit key is sufficient to encrypt a transfer
transaction, the largest of the three types. The length of the secret key thus gen-
erated, expressed in base64, is 280 characters and that of the public key is
about 1330 characters. These keys are stored in variables skey and pkey.

2. Computing the account id. It is obtained by hashing the public key using the
hash function of LStr library. The second parameter of the function specifies

create table ACCOUNT(
 AccountID varchar(64) not null primary key,
 PrivName varchar(64) not null,
 SecretKey varchar(360) not null unique,
 RecTime datetime not null);

ask name = Private name:;
function skey,pkey = LStr:generateRSAkeys 1700;
function aid = LStr:hash {$pkey$},2;
set dat = $date$ $clock$;
set tid = add-$date$_$clock$;
set op = REGISTER;

function sig = LStr:encryptRSA {tid;op;aid;dat},{$skey$};

insert into ACCOUNT (AccountID,PrivName,SecretKey,RecTime)
 values ('aid','§name§','$skey$','dat');
insert into DIRECTORY (AccountID,PublicKey)
 values ('aid','$pkey$');
insert into BTRANSACTION
 (TransID,Operation,Source,RecTime,Signature)
 values ('tid','op','aid','dat','sig');

18 Case study 34 • Blockchains

Printed 28/11/20

the format of the result: hexadecimal (1) or base64 (2). We choose the shorter
base64 format. This value is computed in variable aid.

3. Inserting a row describing the account in table ACCOUNT. We record the ac-
count id, the private name the experimenter will associate with it, the secret
key and the date the account was created. This date consists of the date itself
followed by the current time of the day, information obtained by the date and
clock functions.

4. Inserting a row publishing the public key associated with the account id in ta-
ble DIRECTORY. By default, a new member is not a miner.

5. Inserting a row describing the registration transaction in table BTRANSAC-
TION. The transaction id (column TransID, the value of which comes from
variable tid) is made up of the account id concatenated with the creation date.
The signature of the transaction is obtained by encrypting with the secret key
the string formed by the transaction id, the transaction, the account address and
the date the account was created. An example of contents of the new BTRANS-
ACTION row is shown in Figure 34.3.

Figure 34.3 - Composition of a row of table BTRANSACTION describing the creation
of an account for member Mary

The operation of account creation is coded in script _BC_Create_Account.sql.

34.9 Amount deposit

To simplify, we postulate that the amount a member deposits on his account comes
from a source that we agree to ignore. So, this account is the recipient of an amount
from an unknown source.

The function requires the identification of the recipient account and the amount to
deposit. In this prototype, the recipient account is identified by the private name of
the member.

The logic of the function is similar to that of creating an account, except that the
value of the secret key is not calculated but is extracted from table ACCOUNT.

The main part of the deposit function is shown in Script 34.7. Figure 34.4 repre-
sents an example of the contents of a deposit transaction.

TransKey 259

TransID Vmt2ONz5fHZb8JbpKyzenDLqlLH0pxbxTPeN42Pe2U8=-2019-06-11_09:32:17

Operation REGISTER

Source Vmt2ONz5fHZb8JbpKyzenDLqlLH0pxbxTPeN42Pe2U8=

Recip --

Amount --

RecTime 2019-06-11 09:32:17

Signature Bp8tBqgkTgxdyig[..]PmWAK8q9ngBMKWf

19

Printed 28/11/20

Script 34.7 - Script executing a money deposit (excerpts)

Figure 34.4 - Composition of a row of table BTRANSACTION describing a DEPOSIT
operation: an amount of 150 is deposited on Mary’s account

The operation of amount deposit is coded in script _BC_Execute_Deposit.sql.

34.10 Money transfer

The user specifies the source account, the recipient account and the amount to be
transferred between them. Accounts are designated by the user via their private
names, which the ask function converts into account ids, then stored respectively in
the variables sou (the source account) and rec (the recipient account) (Script 34.8).

The most interesting part of the function is the validation of the amount to be
transferred, which cannot exceed the balance of the source account. This balance is
obtained by a general procedure combining three subtotals representing the inputs
and outputs of the source account:

– Input: the sum of the deposits on this account. This value is stored in variable
plusD.

ask aid,amnt = Your name:[!select PrivName,AccountID
 from ACCOUNT order by PrivName]
 |Amount:;
extract skey = select SecretKey from ACCOUNT
 where AccountID = 'aid';
set dat = $date$ $clock$;
set tid = aid-$date$_$clock$;
set op = DEPOSIT;
function sig = LStr:encryptRSA
 {tid;op;aid;$amnt$;dat},{$skey$};
insert into BTRANSACTION
 (TransID,Operation,Recip,Amount,RecTime,Signature)
values ('tid','op','aid',$amnt$,'dat','sig');

TransKey 274

TransID Vmt2ONz5fHZb8JbpKyzenDLqlLH0pxbxTPeN42Pe2U8=-2019-07-09_16:50:32

Operation DEPOSIT

Source --

Recip Vmt2ONz5fHZb8JbpKyzenDLqlLH0pxbxTPeN42Pe2U8=

Amount 150

RecTime 2019-07-09 16:50:32

Signature 7h7Y025kG8tBqd[..]Pq9ngBMKWfmWAK8

20 Case study 34 • Blockchains

Printed 28/11/20

– Input: the sum of the transfers for which this account is the recipient is added.
This value is stored in variable plusT.

– Output: the sum of the transfers for which this account is the source. This value
is stored in variable minus.

We note the use of SQL function coalesce, that replaces null values with numeric
zero. A null value appears when no rows have been found, which, in this particular
case, must be interpreted as 0.

Script 34.8 - Script executing a transfer between two accounts (excerpts)

This computation could be performed more elegantly with a single SQL query.
However, the detailed procedure of Script 34.8 is more intuitive and therefore has

ask sou,rec,amnt =
 Your name:[!select PrivName,AccountID from ACCOUNT
 order by PrivName]
 |Recipient:[!select PrivName,AccountID from ACCOUNT
 order by PrivName]
 |Amount:;

extract skey = select SecretKey from ACCOUNT
 where AccountID = 'sou';
set tid = sou-$date$_$clock$;
set op = TRANSFER;
set dat = $date$ $clock$;

function sig = LStr:encryptRSA
 {id;op;sou;rec;$amnt$;dat},{$skey$};

extract plusD = select coalesce(sum(Amount),0)
 from BTRANSACTION
 where operation = 'DEPOSIT'
 and Recip = 'sou';
extract plusT = select coalesce(sum(Amount),0)
 from BTRANSACTION
 where operation = 'TRANSFER'
 and Recip = 'sou';
extract minus = select coalesce(sum(Amount),0)
 from BTRANSACTION
 where operation = 'TRANSFER'
 and Source = 'sou';
compute balance = $plusD$ + $plusT$ - $minus$;

if ($balance$ < $amnt$);
 showMessage Insufficient balance.@nOperation cancelled.;
 goto END;
endif;

insert into BTRANSACTION
 (TransID,Operation,Source,Recip,Amount,RecTime,Signature)
values ('tid','op','acc','rec',$amnt$,'dat','sig');

21

Printed 28/11/20

been preferred. It differs from the Bitcoin protocol in that it processes the entire
history of the source account since its creation and not only the last transactions the
ouptput of which have not yet been consumed. This approach is particularly simple.
Though it may seem ineffective, it will be appropriate insofar as:

– the source account history contains a reasonable number of transactions (a few
thousands for example),

– indexes can been created on the Source and Recip columns respectively,
– a transfer operation execution time of a one or two seconds will certainly be

considered acceptable by the user.

Figure 34.5 represents an example of the contents of a transfer transaction.

Figure 34.5 - Composition of a row of table BTRANSACTION describing a
TRANSFER operation : Mary transfers an amount of 18.5 to Luke’s account

The operation of amount transfer is coded in script _BC_Execute_Transfer.sql.

34.11 Validating a transaction

This function checks that the accounts involved in the transaction are recorded in the
DIRECTORY table, that the amount of the transfer transaction is legitimate (less than
or equal to the balance available on the transaction creation date) and that the values
of the components are identical to the content of the signature, decrypted via the
public key.

The operation of transaction validation is coded in script _BC_Validate_Transac
tion.sql.

34.12 Creating and mining a block

This function creates a block containing all the transactions still pending and calcu-
lates the nonce that produces a hash value starting with k binary zeroes. This hash
thus obtained is the block identifier (column Bhash). The identifier of the last block
created so far is also added to the new block (column Bprev), therefore increasing the
blockchain by one unit.

TransKey 322

TransID Vmt2ONz5fHZb8JbpKyzenDLqlLH0pxbxTPeN42Pe2U8=-2019-07-22_13:18:45

Operation TRANSFER

Source Vmt2ONz5fHZb8JbpKyzenDLqlLH0pxbxTPeN42Pe2U8=

Recip g20TQfu12uhOxztWBJ0tIUrNC5L0bhJKMLIUDKTt-Sk=

Amount 18.5

RecDate 2019-07-22 13:18:45

Signature C75d4HLpm9STHj[..]h-blt2uCmMM_mfK

22 Case study 34 • Blockchains

Printed 28/11/20

The procedure of block creation and mining is translated in Script 34.10. It
comprises three steps:

1. Building the data of the block
The body of the block is built by concatening the list of pending transactions (those
not yet included in a block), the recording time and the hash of the last block of the
chain.4

The hash of the last block, that will become the previous block, is extracted from
the row of the block with the highest recording time5:

extract previous = select BChash from BLOCK
 order by RecTime desc;

The list of pending transactions is computed in variable transList by a single SQL
query that assembles the contents of each transaction according to its type (column
Operation) then concatenates them though group_concat aggregate function. For
instance, a REGISTER transaction is assembled as follows (as an SQLfast list6):

TransID||';REGISTER;'||Source||';'||RecTime||';'
 ||Signature

In addition, this query counts the transactions to include in the new block (variable
blockSize). The body of the block can then be computed:

set body = $transList$#$recTime$#$previous$;

It is interesting to note that the list of transactions itself is an SQLfast list the sepa-
rator of which is the # character. So, this list of lists can be easily disassembled to
retrieve the properties of each transaction of the list thanks to the SQLfast list func-
tions. This means that the value of variable body is a valid serialization of the
contents of the block that can be broadcasted to the other members of the blockchain
through email, p2p or ftp protocols. This distribution aspect is not taken in charge by
this prototype.

2. Mining the block
To compute a valid hash and its nonce, we use miningHash, a variant of SQLfast
function hash. This function uses four arguments:

4. Which, actually, is the building time, before mining.
5. The extract statement processes the first row of the result set. Clause limit 1 is therefore
useless.
6. An SQLfast list is a character string formed by a series of elements separated by a special char-
acter (here a semi-colon).

23

Printed 28/11/20

– The character string to hash (in variable body).
– The constraint on the hash, as a k-length string of zero characters (in variable

prefix); k is the difficulty of the mining, set to 20 in the standard SQLfast distri-
bution.

– The maximum number of trials (in variable trials); set to 5,000,000 in the stan-
dard distribution.

– The format of the resulting hash; 1 for hexadecimal and 2 for base64.

It returns three results:
– hash, the value of a valid hash, if one has been found.
– nonce, the corresponding nonce.
– nHash, the number of hash computations that have been needed to get this valid

hash.

If no valid hash has been found, hash = nonce = ''.

set k = 20;
compute prefix = repeat('0',k);
set trials = 5000000;
function hash,nonce,nHash
 = LStr:miningHash $body$,$prefix$,$trials$,2;

The core of this function is shown in Script 34.9. Variable Bdata denotes the string to
hash (as a byte string, not a unicode string) augmented with the current candidate
nonce (str(N)). Variable Bhash denotes the sha256 hash of this value, as a binary
string. Chash is the prefix of this hash, converted in ASCII characters (one character
per bit). Bhash is a valid hash when Chash = prefix.

This procedure certainly is not the fasted we can write, but it is quite sufficient
considering the didactic objective of this prototype. A more realistic version would
be written in C with true bit manipulation primitives and executed by a cluster of
(let us keep it modest) 4,096 processors!

3. Adding the block in the blockchain
A new row is inserted in table BLOCK, comprising the valid hash, the number of
transactions, the nonce, the recording time and the hash of the previous block, if any.
The rows of the transactions of the block are updated to make them reference the
new block.

Figure 34.6 below shows the contents of the rows of the BLOCK table repre-
senting blocks with BlockKey 113 and 114 of the chain7. We will see how to
visualize the transactions of each block in the next section.

7. Prefix 'AAAK' translates '000000 000000 000000 001010' in base64, which complies with
difficulty k = 20.

24 Case study 34 • Blockchains

Printed 28/11/20

Script 34.9 - Main section of Python function LStr:miningHash used to mine a block
(excerpts)

Block n° 114
 Block hash: AAAKqRd-Zq2PtROoXNLidrG_lYAVT5XnfkKsToEGy1w=
 Nb transact: 5
 Nonce: 1526497
 Creation date: 2019-09-02 12:25:56
 Status: 0
 Previous hash: AAAKayF8dzDLswTa5rb_V9nP_Gp536vaZDPuInYCIcM=

Block n° 113
 Block hash: AAAKayF8dzDLswTa5rb_V9nP_Gp536vaZDPuInYCIcM=
 Nb transact: 5
 Nonce: 967544
 Creation date: 2019-09-02 12:15:25
 Status: 0
 Previous hash: AAAKQ7I-HfRKPSCbFK4OKoJ3vkUdLrC-UXC2GVAtECU=

Figure 34.6 - Contents of two successive blocks of 5 transactions

The operation of block creation and mining is coded in script _BC_Create_Block.sql.

34.13 TExamining the blockchain data

Blockchain management systems include an application devoted to the examination
of a blockchain and commonly called Blockchain Explorer. In this section, we
present three exploration functions that can help experimenters understand the result
of the blockchain manipulation operations.

def miningHash(data,prefix,hashNbr,form):
 lenPrefix = len(prefix)
 nonce = ''
 for N in range(trials):
 Bdata = data.encode('latin-1') + str(N)
 Bhash = hashlib.sha256(Bdata)
 Chash = ''.join('{0:08b}'.format(ord(x), 'b')\
 for x in Bhash.digest()\
 [:lenPrefix//8+1])[:lenPrefix]
 if Chash == prefix:
 nonce = str(N)
 break
 if form == 2:
 hash = base64.b64encode(Bhash.digest(),'_-')
 return hash,nonce,N

25

Printed 28/11/20

Script 34.10 - Script creating and mining a block (excerpts)

To illustrate the result produced by these fonctions we suppose that the following
operations have been executed, in this order:

1. Mary creates an account
2. Mary deposits an amount of 100 into her account
3. Luke creates an account
4. Mary transfers an amount of 60 to Lucke’s account
5. Luke deposits an amount of 20 into his account
6. Ann creates an account
7. Luke transfers an amount of 35 to Ann's account
8. Luke transfers an amount of 15 to Mary's account
9. Mary transfers an amount of 18 to Ann's account
10. Ann deposits an amount of 30 into her account

extract previous = select BChash from BLOCK
 order by RecTime desc;
extract transList, blockSize
 = select group_concat2(
 case Operation
 when 'REGISTER'
 then TransID||';REGISTER;'||Source
 ||';'||RecTime||';'||Signature
 when 'DEPOSIT' then ...
 when 'TRANSFER' then ...
 else 'Transaction type unknown'
 end,0,TransKey,1,'#'), count(*)
 from BTRANSACTION
 where BChash is null;

set recTime = $date$ $clock$;
set data = $transList$#$recTime$#$previous$;

set k = 20;
compute prefix = repeat('0',k);
set trials = 5000000;

function hash,nonce,nHash
 = LStr:miningHash $data$,$prefix$,$trials$,2;

insert into BLOCK(BChash,Transact,Nonce,RecTime,BCprev)
 values('$hash$',$blockSize$,'$nonce$','$recTime$',
 case when '$previous$' = '' then null
 else '$previous$'
 end);

update BTRANSACTION
set BChash = '$hash$'
where BChash is null;

26 Case study 34 • Blockchains

Printed 28/11/20

11. Ann transfers an amount of 40 to Luke's account
12. Ann transfers an amount of 12 to Mary's account

In addition, a block is created as soon as 5 transactions have been recorded. The final
chain will therefore consist of two blocks of 5 transactions and 2 pending transac-
tions.

34.13.1Examining an account
The user selects an account to display the successive transactions of which it is the
source or the recipient, as well as its current balance. For reasons of readability, in
this function as well as in the other two, accounts are designated by the private name
of their owner. The report below is related to Mary's account.

Transactions of your account
 +--------+-----------+--------+-------+---------------------+---------+
 | Source | Operation | Amount | Recip | TimeCreated | InBlock |
 +--------+-----------+--------+-------+---------------------+---------+
Mary	REGISTER	--	--	2018-12-30 19:25:47	yes
--	DEPOSIT	100	Mary	2018-12-30 19:26:09	yes
Mary	TRANSFER	60	Luke	2018-12-30 19:26:48	yes
Luke	TRANSFER	15	Mary	2018-12-30 19:31:44	yes
Mary	TRANSFER	18	Ann	2018-12-30 19:31:59	yes
Ann	TRANSFER	12	Mary	2018-12-30 19:36:34	--
 +--------+-----------+--------+-------+---------------------+---------+

Your account balance
+---------+---------+----------+------------+---------+
| Account | Deposit | Received | Transfered | Balance |
+---------+---------+----------+------------+---------+
| Mary | 100 | 27 | -78 | 49 |
+---------+---------+----------+------------+---------+

This function is coded in script _BC_Examine_Account.sql.

34.13.2Examining the transactions
The function displays the chronological list of transactions and the balance of each
account.

Transactions
+--------+-----------+--------+-----------+---------------------+-------+
| Source | Operation | Amount | Recipient | TimeCreated | Block |
+--------+-----------+--------+-----------+---------------------+-------+
Mary	REGISTER	--	--	2018-12-30 19:25:47	yes
--	DEPOSIT	100	Mary	2018-12-30 19:26:09	yes
Luke	REGISTER	--	--	2018-12-30 19:26:25	yes
Mary	TRANSFER	60	Luke	2018-12-30 19:26:48	yes
--	DEPOSIT	20	Luke	2018-12-30 19:27:02	yes
Ann	REGISTER	--	--	2018-12-30 19:31:00	yes
Luke	TRANSFER	35	Ann	2018-12-30 19:31:26	yes
Luke	TRANSFER	15	Mary	2018-12-30 19:31:44	yes
Mary	TRANSFER	18	Ann	2018-12-30 19:31:59	yes
--	DEPOSIT	30	Ann	2018-12-30 19:32:12	yes
Ann	TRANSFER	40	Luke	2018-12-30 19:36:19	--

27

Printed 28/11/20

| Ann | TRANSFER | 12 | Mary | 2018-12-30 19:36:34 | -- |
+--------+-----------+--------+-----------+-------------------+---------+

Account balance
+---------+---------+----------+------------+---------+
| Account | Deposit | Received | Transfered | Balance |
+---------+---------+----------+------------+---------+
Ann	30	53	-52	31
Luke	20	100	-50	70
Mary	100	27	-78	49
+---------+---------+----------+------------+---------+

This function is coded in script _BC_Examine_Transactions.sql.

34.13.3Examining the blockchain
The function displays the content of each block in the chain, its properties and those
of each of its transactions.

Block n° 2
 Block hash: AAALlzLVgFBSa_E5Wzqf1RQ6VlK8M1mVkrlvHha26r4=
 Nbr transact: 5
 Nonce: 334045
 Record Time: 2018-12-30 19:35:05
 Status: 0
 Hash previous: AAAD8ewt9-jHhBJts048MamR-vbeCts4BXLCpZh8QsY=
 +--------+-----------+--------+-----------+---------------------+
 | Source | Operation | Amount | Recipient | TimeCreated |
 +--------+-----------+--------+-----------+---------------------+
 | Ann | REGISTER | -- | -- | 2018-12-30 19:31:00 |
 | Luke | TRANSFER | 35 | Ann | 2018-12-30 19:31:26 |
 | Luke | TRANSFER | 15 | Mary | 2018-12-30 19:31:44 |
 | Mary | TRANSFER | 18 | Ann | 2018-12-30 19:31:59 |
 | -- | DEPOSIT | 30 | Ann | 2018-12-30 19:32:12 |
 +--------+-----------+--------+-----------+---------------------+

Block n° 1
 Block hash: AAAD8ewt9-jHhBJts048MamR-vbeCts4BXLCpZh8QsY=
 Nbr transact: 5
 Nonce: 1815939
 Record Time: 2018-12-30 19:27:10
 Status: 0
 Hash previous: --
 +--------+-----------+--------+-----------+---------------------+
 | Source | Operation | Amount | Recipient | TimeCreated |
 +--------+-----------+--------+-----------+---------------------+
 | Mary | REGISTER | -- | -- | 2018-12-30 19:25:47 |
 | -- | DEPOSIT | 100 | Mary | 2018-12-30 19:26:09 |
 | Luke | REGISTER | -- | -- | 2018-12-30 19:26:25 |
 | Mary | TRANSFER | 60 | Luke | 2018-12-30 19:26:48 |
 | -- | DEPOSIT | 20 | Luke | 2018-12-30 19:27:02 |
 +--------+-----------+--------+-----------+---------------------+

Pending transactions (not yet in block)
 +--------+-----------+--------+-----------+---------------------+
 | Source | Operation | Amount | Recipient | TimeCreated |
 +--------+-----------+--------+-----------+---------------------+
 | Ann | TRANSFER | 40 | Luke | 2018-12-30 19:36:19 |
 | Ann | TRANSFER | 12 | Mary | 2018-12-30 19:36:34 |
 +--------+-----------+--------+-----------+---------------------+

28 Case study 34 • Blockchains

Printed 28/11/20

This function is coded in script _BC_Examine_Blockchain.sql.

34.14 Wrapping it all: the BLOCKCHAIN toolbox

The functions of the toolbox are independent, but, for convenience, they are avail-
able via the control screen in Figure 34.7, displayed by script BLOCKCHAIN.sql. The
execution of the three operations generating a transaction can be accompanied by the
display of the contents of the ACCOUNT, DIRECTORY and BTRANSACTION tables.
To do this, check the box entitled "Display table contents after each transaction".

The table contents can also be viewed via the "Database > Show DB Data" menu
function in the main SQLfast window.

Figure 34.7 - Control panel of the toolbox

The scripts of the prototype Blockchain toolbox are available in the SQLfast/Scripts/
Case-Studies/Case_BlockChain directory.

