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Objective: This chapter tackles a widespread optimization problem:
computing the shortest path between two cities. The solving technique
is based on Dijkstra’s algorithm. It also is applied to two similar appli-
cations domains, namely maze solving and controlling a rover on a
hostile planet. A general purpose, application independent, solving tool
is developed. 
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31.1 Shortest paths between two cities

Let us consider a set of cities between which roads have been built (Figure 31.1). We
associate a distance with each road. For instance, the road from city A to city B is 85
km long. We will write: dAB = 85. To compute the distance between cities A and F
we add distances 85 and 80, that is, dAF = 165 km.

Computing dAJ, the distance between A and J, is a bit more complex. Indeed, the
figure shows that three different paths with three different lengths connect city A to
city J, namely:

– A.B.F.I.J with dAJ = 499 km
– A.C.H.J with dAJ = 487 km
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– A.E.J with dAJ = 675 km

Hence the concept of shortest path between two cities. Computing efficiently this
shortest path is the main objective of this chapter.

Figure 31.1 - A map showing cities and roads between them

31.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is the most popular technique to find the shortest path between
two nodes of a graph1.

Each edge of the graph is given a cost that measures the effort required for travel-
ling from the source node to the target node. This cost (a non-negative number) can
be the distance or more generally some resource (such as money, time, energy or
gasoline), depending on the nature of the problem. 

We will develop one of the variants of this algorithm, that computes the shortest
paths between a definite node, the starting node, and each of the other nodes of the
graph (actually, one of the shortest paths, since more than one path with the same
length may exist), a structure called the shortest-path tree. By querying this tree, we
can extract the shortest path between the starting node and any target node.

Let A be the starting node of the graph. We assign to each node a property that
specifies its distance from this starting node. Before applying the algorithm, we set
this property to 0 for node A (the distance between A and A is zero) and infinite for
all the other nodes (Figure 31.2). The goal of the algorithm is to adjust this distance
until we get its minimal value.

1. See https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm for example
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We distinguish in this graph two subsets of nodes, the nodes for which the
minimal distance has already been computed and the other nodes, for which the
minimal distance has yet to be evaluated. Let us call the first category internal
nodes (they belong to the solution) and the others external nodes. Before applying
the algorithm, the set of internal nodes is empty. Internal nodes are drawn in dark
gray and the external nodes in white.

We will examine each of the external nodes, one by one. When we select a node
to examine, we color it in light gray.

Figure 31.2 - Initial state of the graph

Quite naturally, we examine starting node A first, which is then colored in light gray
(Figure 31.3/left). The distance of B from A, dB, is set to dAB. More precisely, dB =
dA + dAB. The same modification is applied to the other neighbor nodes C and E. The
result is shown in Figure 31.3/left. Node A is (trivially) an internal node and is
colored in dark gray (Figure 31.3/right).

Figure 31.3 - Processing cities A and B
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Here comes the smart part of the algorithm. 
Among the external subset, we select the node with the lowest distance and we

examine it. At this stage, this node is B, with distance dB = 85. Its unique neighbor is
F, for which we compute new distance dF = dB + dBF = 85 + 80 = 165. Since this new
value is lower than the former one (∞), it is assigned to F. The current state of the
graph is shown in Figure 31.3/right.

What is the status of node B? Could we find, later, a better path from A to it? No,
we couldn’t since this hypothetical path should include at least one external node
and all of them have a higher distance than that of B. So, dB really is minimal so that
B can be declared an internal node, which therefore is colored in dark gray (Figure
31.4/left).

Once again, we select the external node with the lowest distance and we examine
it. This node is F, with distance 165. It is colored in light gray and its neighbors are
updated. Its unique neighbor is I, the new distance of which is dI = dF + dFI = 165 +
250 = 415. Since 415 < ∞, the distance of I is updated (Figure 31.4/left).

The reasoning about the status of B can be applied to F, which becomes internal
and is colored in dark gray (Figure 31.4/right).

In the next iteration, we select and examine external node E, which now has the
lowest distance (173). It is colored in light gray and its unique neighbor, J, is
updated: dJ = dE + dEJ = 173 + 502 = 675. Since 675 < ∞, the distance of J is
updated (Figure 31.4/right).  

Figure 31.4 - Processing cities F and E

In the following iterations:
– E becomes internal, C is selected (dC = 217 is the lowest) and examined, its

neighbor H is updated with dH = dC + dCH = 320. Since 320 < ∞, the distance of H
is updated (Figure 31.5/left).
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– C becomes internal, H is selected (dH = 320 is the lowest) and examined, its neigh-
bors D and J are updated. For J, dJ = dH + dHJ = 487. Since 487 < 675, the distance
of J is replaced (Figure 31.5/right).

Figure 31.5 - Processing cities C and H. Improving the path to J.

– H becomes internal, I is selected (dI = 415 is the lowest) and examined, its
neighbor J is tentatively updated. dJ = dI + dIJ = 499. Since 499 > 487, the distance
of J is not replaced (Figure 31.6/left).

– I becomes internal, J is selected (dI = 487 is the lowest) and examined, it has no
neighbor so that its examination stops (Figure 31.6/right).

Figure 31.6 - Processing cities I and J

– J becomes internal, the last external node D is selected and becomes internal. 
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The final state is shown in Figure 31.7. The shortest path from A to J is A.C.H.J ,
with a distance of 487 km.

Figure 31.7 - The shortest path from A to J is A.C.H.J

Important notes
It is worth to note that this algorithm still is valid if the graph is not acyclic, that
is, includes circuits. It is also valid if it is not directed, i.e., if paths can be
followed in both directions.
The algorithm produces the shortest path from the starting city to each of the
other cities. Actually, it provides much more! If dAK is the length of the shortest
path from A to K, and if E is in this path, then dEK = dAK - dAE. 

31.3 Representation of the graph

Table CITY stores the description of the nodes (the cities) of the graph: CityID (tech-
nical id), Name (city name), Mark (0 for external nodes and 1 for internal nodes),
Path (the current shortest path to this city from the starting city) and Dist (length of
the current shortest path).

Tables NPATH and PATH both represents the edges (the paths) of the graph.
NPATH expresses them through city names while PATH uses city ID’s. The first one
is more convenient for users while the second one is more efficient for complex
calculations (Script 31.1)

To make SQL queries more expressive, we also define views, namely
EXTERNAL, that selects external cities, and ExtPATH that provides an extended
presentation of PATH (Script 31.2).

Script 31.3 loads the data describing the graph of Figure 31.2.
If the graph is not directed, we create the inverse paths:
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insert into NPATH(City1,City2,Len)
       select City2,City1,Len from NPATH;

The starting state of the graph is defined as follows (999999 denotes infinity):

update CITY set Mark = 0, Path = '', Dist = 999999;

 

Script 31.1 - Data structure for City/Path graphs

 

Script 31.2 - Complementary views

 

Script 31.3 - Load the City/Path graph of Figure 31.2

create table CITY(CityID integer not null
                         primary key autoincrement,
                  Name   varchar(32) not null,
                  Mark   integer,
                  Path   varchar(256),
                  Dist   integer);

create table NPATH(City1 varchar(32) not null,
                   City2 varchar(32) not null,
                   Len   integer not null);

create table PATH(City1  integer not null,
                  City2  integer not null,
                  Len    integer not null);

create view EXTERNAL as select * from CITY where Mark = 0;

create view ExtPATH(City1,Name1,Dist1,Len,City2,Name2,Dist2)
       as select P.City1,C1.Name,C1.Dist,P.Len,
                 P.City2,C2.Name,C2.Dist
          from   CITY as C1, PATH as P, CITY as C2
          where  C1.CityID = P.City1
          and    P.City2 = C2.CityID;

insert into CITY(Name) values ('A'),('B'),('C'),('D'),('E'), 
                              ('F'),('H'),('I'),('J');
insert into NPATH(City1,City2,Len) values
       ('A','B',85),('A','C',217),('A','E',173),('B','F',80),
       ('C','H',103),('F','I',250),('H','D',183),
       ('H','J',167),('E','J',502),('I','J',84);
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Script 31.4 derives PATH rows from NPATH rows, asks the user the name of the
starting city and updates the state of this city.
 

Script 31.4 - Prepare data and select the starting city

31.4 Computing the shortest paths from a starting city

The structure of the algorithm is a loop each iteration of which selects and examines
an external city. Since each external city will be selected once and only once, the
loop will look as follows:

extract N = select count(1) from CITY;
for step = [1,$N$];
  <A. select S = external city with the lowest distance>
  <B. update the neighbors of S>
  <C. make S an internal city>
endfor;

A. Selection of S, an external city
We extract the ID of a city from the EXTERNAL view where the distance (column
Dist) is equal to the minimum of the distances (min(Dist)) of all the external cities.
If more than one city may satisfy this condition, the first one is selected. Hence the
query:

extract S = select CityID from EXTERNAL
            where  Dist = (select min(Dist) from EXTERNAL);

B. Updating the neighbors of S
This task is the core of the algorithm. It will be translated into a single SQL update
query. To make it more expressive, we first define two shorthands that translate
natural concepts: 
– the neighbors of S:
 set neighbors = select City2 from PATH where City1 = $S$;

insert into PATH select C1.CityID,C2.CityID,Len
                 from   CITY C1, NPATH P, CITY C2
                 where  C1.Name = P.City1
                 and    P.City2 = C2.Name;

ask start = Starting city:[select Name,CityID
                           from   CITY order by Name];

update CITY set Mark = 0, Dist = 0, Path = Name
where  CityID = '$start$';
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– the tentative new distance of each neighbor of S:
 set newDist = (select Dist1 + Len from ExtPATH 
                where  City1 = $S$
                and    City2 = CITY.CityID);

This part of the update query computes the distance of the neighbor city being
updated, denoted by CITY.CityID. Dist1 is the distance of the selected external
city and Len is the length of the path between these two cities.

The updating can then be written very naturally, as follows:
 update CITY
 set    Dist = min(Dist,$newDist$)
 where  CityID in ($neighbors$);

Recording the paths
So far, we have computed the shortest distance between two cities but we have not
recorded the intermediate cities that constitute this shortest path. When we update a
neighbor, if the new distance is lesser than its current distance, we also replace the
current path of the neighbor by that of the selected external city to which we append
the name of the neighbor: 

 update CITY
        Path = case when  Dist > $newDist$
                    then  (select Path from CITY
                           where CityID = $S$)||'.'||Name
                    else  Path
               end
 where  CityID in ($neighbors$);

By merging both update queries we get:

 update CITY
 set    Dist = min(Dist,$newDist$),
        Path = case when  Dist > $newDist$
                    then  (select Path from CITY
                           where CityID = $S$)||'.'||Name
                    else  Path
               end
 where  CityID in ($neighbors$);

C. Making S an internal city
The SQL expression is straightforward:

update CITY set Mark = 1 where CityID = $S$;

The complete algorithm is shown in Script 31.5.
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Script 31.5 - Computing the shortest paths of cities from a starting city

The execution of this script for the problem depicted in Figure 31.1 provides this
solution:

    +--------+------+------+---------+------+
    | CityID | Name | Mark | Path    | Dist |
    +--------+------+------+---------+------+
    | 1      | A    | 1    | A       | 0    |
    | 2      | B    | 1    | A.B     | 85   |
    | 3      | C    | 1    | A.C     | 217  |
    | 4      | D    | 1    | A.C.H.D | 503  |
    | 5      | E    | 1    | A.E     | 173  |
    | 6      | F    | 1    | A.B.F   | 165  |
    | 7      | G    | 1    | A.C.G   | 403  |
    | 8      | H    | 1    | A.C.H   | 320  |
    | 9      | I    | 1    | A.B.F.I | 415  |
    | 10     | J    | 1    | A.C.H.J | 487  |
    +--------+------+------+---------+------+

If we are only interested by the shortest path between two definite nodes, we can
stop the iterations and exit the loop once the target city has been made internal. 

extract N = select count(1) from CITY;

for step = [1,$N$];

   extract S = select CityID from EXTERNAL
               where  Dist = (select min(Dist)
                                from   EXTERNAL) #1;

   set neighbors = select City2 from PATH
                   where  City1 = $S$;

   set newDist = (select Dist1 + Len from ExtPATH 
                  where  City1 = $S$
                  and    City2 = CITY.CityID);

   update CITY
   set    Dist = min(Dist,$newDist$),
          Path = case when  Dist > $newDist$
                      then  (select Path from CITY
                             where CityID = $S$)||'.'||Name
                      else Path
                 end
   where  CityID in ($neighbors$);

   update CITY  set Mark = 1 where CityID = $S$;

endfor;
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31.5 Building a general purpose shortest path engine

Joining two cities in an efficient way is just one specific example of a more general
family of optimization problems that can be modelled by a graph. Cities are nodes
of the graph while roads are directed or undirected paths between nodes. The length
associated with a road can be generalized as the cost of the path. Finally, the distance
of a city from the starting city (we will call it the starting node) also is its cost.

Now, we can write a set of procedures with which one can easily solve any
problem pertaining to the shortest path family.
This set includes generic, problem-independent, procedures:

– __Shortest-path_DB.sql: creates tables NODE, PATH and NPATH and the
views of the database. See Script 31.6.

– __Shortest-path_Engine.sql: applies Dijkstra algorithm to the problem stored
in the database. See Script 31.7.

– __Display_Shortest-path.sql: displays the solution of the problem. See Script
31.8.

– __Display_Nodes.sql: displays the final state of table NODE (which includes
the solution). See Script 31.9.

In addition, for any type of problems X, we have to write two scripts:
– _X_Loader.sql: loads in tables NODE and NPATH the data describing the

specific problem X, creates, if needed, the inverse paths then derives the rows
of table PATH.

– X_Solver.sql: main script used to solve any problem of type X; each of them
has the minimal structure:

createDB InMemory;
   execSQL __Shortest-path_DB.sql;
   execSQL _X_Loader.sql;
   execSQL __Shortest-path_Engine.sql
   execSQL __Display_shortest-path.sql;
closeDB;

The script that computes the shortest path between two cities can then be
rewritten as Scripts 31.10 and 31.11.
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Script 31.6 - Generic data structures for shortest path problems [script file _Shortest-
path_DB.sql]

 

Script 31.7 - The shortest path algorithm [script file _Shortest-path_Engine.sql]

create table NODE (NodeID integer not null
                          primary key autoincrement,
                   Name   varchar(32) not null,
                   Mark   integer,
                   Path   varchar(256),
                   Cost   numeric);

create table NPATH(Node1  varchar(32) not null,
                   Node2  varchar(32) not null,
                   Cost   numeric not null);

create table PATH( Node1  integer not null,
                   Node2  integer not null,
                   Cost   numeric not null);

create view EXTERNAL as select * from NODE where Mark = 0;

create view ExtPATH(Node1,Name1,Cost1,Cost,Node2,Name2,Cost2)
            as select P.Node1,C1.Name,C1.Cost,P.Cost,
                      P.Node2,C2.Name,C2.Cost
               from   NODE as C1, PATH as P, NODE as C2
               where  C1.NodeID = P.Node1
               and    P.Node2 = C2.NodeID;

extract N = select count(1) from NODE;

for step = [1,$N$];

   extract S = select NodeID from EXTERNAL
               where  Cost = (select min(Cost)
                              from   EXTERNAL);

   set neighbors = select Node2 from PATH where Node1 = $S$;
   set newCost = (select Cost1 + Cost from ExtPATH 
                  where  Node1 = $S$ and Node2 = NODE.NodeID);
   update NODE
   set    Cost = min(Cost,$newCost$),
          Path = case when Cost > $newCost$
                      then (select Path from NODE 
                            where NodeID = $S$)||'.'||Name
                      else Path
                 end
   where  NodeID in ($neighbors$);

   update NODE set Mark = 1 where NodeID = $S$;

endfor;
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Script 31.8 - Display the solution of the problem [script file _Display_Shortest-
path.sql]

 

Script 31.9 - Display the final state of table NODE [script file _Display_Nodes.sql]

 

Script 31.10 - Loading the data for the Inter-City problem depicted in Figure 31.1
[script file _Inter-City_Loader#1.sql]

if ('$end$' = '');
   write-ab -- No target node has been specified.;
   return;
endif;

extract cost,path = select Cost,Path from NODE
                    where  NodeID = '$end$';
extract nam1 = select Name from NODE where NodeID = '$start$';
extract nam2 = select Name from NODE where NodeID = '$end$';
write-b -- Shortest path from "$nam1$" to "$nam2$": $path$;
write-a -- Cost of this path = $cost$.

set maxSelect = $maxSelectWidth$;
extract maxSelectWidth = select max(length(Path))+34
                         from   NODE;
select Name as Node,Path,Cost from NODE;
set maxSelectWidth = $maxSelect$;

insert into NODE(Name) values ('A'),('B'),('C'),('D'),('E'),
                              ('F'),('G'),('H'),('I'),('J');
insert into NPATH values
      ('A','B',85),('A','C',217),('A','E',173),('B','F',80),
      ('C','G',186),('C','H',103),('F','I',250),('H','D',183),
      ('H','J',167),('E','J',502),('I','J',84);

insert into PATH select C1.NodeID, C2.NodeID, P.Cost
                 from   NODE C1, NPATH P, NODE C2
                 where  C1.Name = P.Node1
                 and    P.Node2 = C2.Name;

update NODE set Mark = 0, Path = '', Cost = 999999;
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Script 31.11 - The solver for Inter-City problems [script file Inter-City_Solver.sql]

31.6 Ariadne’s thread: solving mazes

Mazes are popular brain puzzles that ask players to walk across a convoluted path
from an entry gate to an exit gate. In many of them, there is only one route from
these gates, a pattern called unicursal maze or labyrinth. Multicursal mazes allow
more than one route between gates.

The small multicursal maze of Figure 31.8 comprises two distinct start-to-exit
routes, depicted by lines red and blue. The first one (red) requires 20 steps (a step is
a unitary square room) while the last one (blue) is 18 step long, and therefore is the
shortest one.

Figure 31.8 - A typical multicursal maze2

set script = 
    $scriptDirectory$/Case-Studies/Case_Shortest_Path;

createDB InMemory;

   execSQL $script$/_Shortest-path_DB.sql;
   execSQL $script$/Inter-City_Loader#1.sql;

   ask start,end = Starting node:[select Name,NodeID
                                  from   NODE order by Name]
                  |Target node:[select Name,NodeID 
                                from   NODE order by Name];
      if ('$DIALOGbutton$' = 'Cancel' or '$start$' = '') stop;

   update NODE set Mark = 0, Cost = 0, Path = Name
   where NodeID = '$start$';

   execSQL $script$/_Shortest-path_Engine.sql;
   execSQL $script$/_Display_Shortest-path.sql;

closeDB;

2. Derived from https://en.wikipedia.org/wiki/Maze
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A maze can be described in two equivalent ways. On the one hand, one shows its
walls, between which the route to find will be drawn. This is the usual way mazes
are described (Figure 31.9/left). The second convention consists in showing the
available paths the maze is made up of, i.e., the space between walls (Figure 31.9/
right). We will reason on this latter representation.

Figure 31.9 - Dual representations of a maze: walls (left) and paths (right)

Considering the grid of Figure 31.10, in which each node is denoted by its row and
column identifiers (e.g., B8, E2, etc.), building a maze is simply performed by
marking the edges that belong to the maze (Figure 31.9/right).

In this way, solving a maze appears to be a special case of finding the shortest
path between cities. The nodes of the grid are some sort of cities while the edges are
roads between cities, all with the same arbitrary length, say, 1.

Figure 31.10 - The background grid of a maze

A real maze will comprise quite a lot of nodes and edges. To help players to build
them, we suggest to describe them in a text file (named Maze_map.txt) where a node
is represented by star symbol '*', a horizontal edges by '--' and a vertical edge by
symbol '|' (Figure 31.11).

This file is then transformed into a script made up of insert queries that load
the description of the maze into tables NODE, NNPATH and PATH. This transforma-
tion is performed by small Python program Generate-Maze.py,3 which generates file
Maze_Loader.sql.

3. Its translation into an SQLfast script is left as an exercise.
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Figure 31.11 - Code of a maze [file Maze_map.txt]

 

Script 31.12 - The maze solver [script file Maze_Solver.sql]

The larger maze of Figure 31.12 is defined in text file Maze_map_Large.txt.

Some references on maze algorithm
Some of the main maze solving techniques are described in https://en.wikipedia.org/
wiki/Maze_solving_algorithm. The shortest path algorithm is briefly mentioned, but
does not refer to Dijkstra’s algorithm explicitly.

Generating maze is also quite interesting. Reference https://en.wikipedia.org/wiki/
Maze_generation_algorithm can be used as a starting point. In particular, it provides
Python programs to generate mazes. Cellular automata (see Chapter 32, Conway’s

            *  *  *  *  *  *  *  *  *  *
            |                           
            *--*--*  *--*--*  *--*--*--*
                  |  |     |  |        |
            *  *--*--*--*  *--*  *  *--*
            |           |     |  |  |   
            *--*  *--*  *--*  *--*  *--*
               |  |     |  |        |  |
            *--*--*  *  *  *--*  *--*  *
            |        |  |        |     |
            *--*--*--*--*--*--*--*--*  *

set script = 
    $scriptDirectory$/Case-Studies/Case_Shortest_Path;

   createDB InMemory;

   execSQL $script$/_Shortest-path_DB.sql;
   execSQL $script$/Maze_Loader.sql;

   ask start,end = Starting node:[select Name,NodeID
                                 from    NODE order by Name]
                  |Target node:[select Name,NodeID
                                from   NODE order by Name];
      if ('$DIALOGbutton$' = 'Cancel' or '$start$' = '') stop;

   update NODE set Mark = 0, Cost = 0, Path = Name
   where  NodeID = '$start$';

   execSQL $script$/_Shortest-path_Engine.sql;
   execSQL $script$/_Display_Shortest-path.sql;

closeDB;
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Game of Life) with special generation rules can be used to create large mazes. They
are described in http://www.conwaylife.com/w/index.php?title=Maze.

Figure 31.12 - A real size maze (text file Maze_map_Large.txt)

31.7 Exploring a planet

Let us imagine that we are to control an exploratory vehicle, sent on a remote planet,
to make it move from a starting position to a target position in a hostile 2D space.
This vehicle, generally called a rover, obeys elementary commands, which are to
move one step in one of the four cardinal directions: N, S, E and W. The floor itself
is modeled as a regular grid like that of Figure 31.13/left.

In this example, the rover starts at position A5 (the red point) and has to reach
target position J8 (the blue point). Each step consumes a unitary electrical power,
say, 1 Wh (one watt during one hour). Since the power of the rover is limited, it
would be nice to guide the rover so that it consumes the lowest possible energy to
accomplish its task.
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Clearly, this problem is fairly close to that of the shortest path between cities: the
nodes of the grid are kind of cities (named A1, A2, ..., J9, J10) and steps are roads
between these cities, with unitary cost. 

To make things more realistic, we consider that the rover may have to move
across swamp areas that will require more power. Let us say that a step in such an
area will cost 3 units. In addition, the floor is scattered with rocks that force the
rover to go around them to progress to the target. The grid of Figure 31.13/right
shows where the swamp areas (light gray) and the rocks (solid dark gray) are
located. 

Figure 31.13 - The remote planet the rover has to explore is not as easy as planet 
earth!

How to represent rocks, which are forbidden areas? The most obvious technique
would consist in deleting all the paths partially or completely covered by a rock, as
we did in solving the maze problem. We can also keep these paths, to which we
assign an infinite cost, that is, practically, 999,999 units, so that they will never be
chosen.

The solution for starting position A5 to target position J8 is shown in Figure
31.14/left. Its cost is 26 Wh. 

Now, let us consider the second generation rover, which is able to climb rocks
securely, but at the higher cost of 6 Wh per rock step. Our algorithm finds another,
more sober, path, shown in Figure 31.14/right. Its cost is 22 Wh.

Script 31.13 shows an example of solver for rover problems. The unit cost of
plain floor, swamp and rock can be chosen interactively. The script Rover-on-
Planet_Loader.sql loads the data for the planet model of Figure 31.13/right.
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Some references on rover pathfinding
As we can expect, most references on controlling rovers are classified by the NASA,
and therefore are not available. Nevertheless, the reader can find some interesting
hints in this reference: https://en.wikipedia.org/wiki/Pathfinding. In particular, it
discusses pathfinding algorithms in video games.

Figure 31.14 - One of the shortest paths between positions A5 and J8 as performed 
by the first (left) and second (right) generation rovers.
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Script 31.13 - The solver for rover problems [script file Rover-on-Planet_Solver.sql]

set scripts = SQLfast-Tutorials/Chapter-52;

createDB InMemory;

execSQL $scripts$/_Shortest-path_DB.sql;

set c1 = 1;
set c2 = 3;
set c3 = 999999;
   ask-u c1,c2,c3 = Cost of normal step:
                   |Cost of swamp step:
                   |Cost of rock step:;

   execSQL $scripts$/Rover-on-Planet_Loader.sql;

   ask start,end = Starting node:[select Name,NodeID
                                 from    NODE order by Name]
                  |Target node:[select Name,NodeID
                                from   NODE order by Name];
      if ('$DIALOGbutton$' = 'Cancel' or '$start$' = '') stop;

   update NODE set Mark = 0, Cost = 0, Path = Name 
   where  NodeID = '$start$';

   execSQL $scripts$/_Shortest-path_Engine.sql;
   execSQL $scripts$/_Display_Shortest-path.sql;

closeDB;
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31.8 Performance and optimization

Finding real country maps comprising a large number of cities AND in which the
lengths of the roads between them are specified is no easy task. To evaluate the
performance of the algorithm developed above we will rely on artificial maps gener-
ated as square grids like those used to model mazes. Each node represents a city and
each city is linked to its four closest neighbors (except border cities of course). So,
an NxN grid represents a map with N2 cities and 4 x N x (N - 1) roads.

The goal is to compute the shortest paths from the top left city to all the other
cities. Figure 31.15 shows the time needed to get the result for increasing values of
N (column Time1). 

Figure 31.15 - Computing time (in seconds) for various map sizes

Column Time2 shows much better results. They are obtained by indexing table
PATH on column (Node1). This index speeds up the evaluation of expressions neigh-
bors and newCost.

Third column Time3 shows the execution time of the shortest-path engine coded
in Python (program Shortest_Path.py). Its times are the best for small problems but
become, by far, the worst for large values if N.

Figure 31.16 represents graphically the execution time of these three techniques,
repectively named Plain (Time1), Index (Time2) and Python (Time3). The fourth
curve translates the theoretical law N logN. It allows to observe that the result of the
indexed technique is quite close to the theoretical performance of Dijkstra’s algo-
rithm, the complexity of which is O(N logN).4

To test other grid sizes from N = 4 to 64, use predefined script Large-grid-
maps_Solver.sql.

N Cities Roads Time1 Time2 Time3
10 100 360 0.124 0.109 0.001
20 400 1520 0.624 0.468 0.156
30 900 3480 1.872 1.123 0.812
40 1600 6240 4.446 2.215 2.558

50 2500 9800 9.236 3.776 6.240

60 3600 14160 17.175 6.048 13.010

4. The complexity of an algorithm is a measure of the limit of the behaviour of its execution time
(or any other resource it needs, such as memory space) when the size of the problem (here N)
increases. Writing that the execution time of Dijkstra’s algorithms varies as N logN means that if
the execution time is T for a certain value of N, then, for a grid of 2N, the execution time will be
a bit higher than 2T (linear) but much better than 4T (quadratic).
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Figure 31.16 - Comparison of the performance of various algorithms

31.9 The scripts

The algorithms and programs developed in this study are available as SQLfast
scripts in directory SQLfast/Scripts/Case-Studies/Case_Shortest_Path. They can
be run from main script Shortest-MAIN.sql, that displays the selection box of Figure
31.17. 

These scripts are provided without warranty of any kind. Their sole objectives are to
concretely illustrate the concepts of the case study and to help the readers master
these concepts, notably in order to develop their own applications. 
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Figure 31.17 - Selecting and solving a best path problem
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