
Case study 30 30

Classifying objects

Objective. In this study, we explore a particular way of classifying
objects based on their attributes. This technique, called Formal
Concept Analysis, or FCA for short, examines the composition of these
objects and extracts concepts, that is, classes of objects that share the
same set of attributes. By considering the inclusion relationship of the
concept object sets, the concepts can be organized as a hierarchy.
Several techniques have been designed to extract concepts from a set of
source objects and to build their hierarchy. We analyze the reasoning
underlying these techniques and we develop one of the most popular of
them, the Chein algorithm. We first translate this iterative algorithm
into a Python procedure then we express it as an SQL script. 
We propose a third, much simpler and faster technique that produces a
remarkable subset of the Chein concept hierarchy. It appears that this
technique, which can be coded as a single SQL query or in a small
Python procedure, is more appropriate to database schema processing,
specifically to conceptual schema normalization and to reverse engi-
neering legacy databases. 
The study develops four parametric applications to experiment with
these algorithms and to evaluate their performance in time and space.
Keywords. symbolic classification, Formal Concept Analysis (FCA),
Galois lattice, set operators, performance evaluation, database optimi-
zation, algorithm optimization



2 Case study 30 • Classifying objects

Printed 4/6/23

Table of content

1. Introduction and motivation
A short illustration of FCA
The solution is not always as straightforward
Naming the concepts generated
Some words of conclusion
What next?
About the scope of this study

2. Principles of FCA - Finding the concepts
Rectangles
Extending a rectangle
Maximal rectangles and concepts
Finding concepts by visual inspection
Merging two rectangles
Degenerated merging
Processing non-binary relations

3. Principles of FCA - Building the concept hierarchy
4. Looking for a systematic procedure

4.1 Finding the concepts
4.2 Building the concept hierarchy

5. The Chein algorithm
5.1 Analysis of the algorithm
5.2 Procedural expression of the Chein algorithm

6. An SQL implementation of the Chein algorithm
6.1 Operations on sets in SQL
      Solving a basic problem: identifying a set
      Set operations revisited
6.2 SQL implementation of the Chein algorithm

7. A Python implementation of the Chein algorithm
8. Building the concept hierarchy

8.1 An SQL implementation
8.2 A Python implementation

9. An alternative FCA implementation: ISA recovery
9.1 The basic algorithm
9.2 An SQL translation of the ISA recovery algorithm
9.3 The case of empty concepts
      Preserving the source objects with no proper attributes
      Empty intermediate concepts
      Creating the empty intermediate concepts
9.4 Python translation of ISA recovery algorithm

10. Experimentation
10.1 The scripts
10.2 Sample formal contexts
10.3 The context generator

11. Evaluation of the FCA implementations
11.1 Simplicity of algorithms
11.2 Preservation of the source concepts
11.3 Nature of the attributes of the concepts



3

Printed 4/6/23

11.4 Creation of empty intermediate concepts
11.5 Space requirements
11.6 Runtimes

12. Improving the performance of the algorithms
12.1 Chein algorithm (Python implementation)
12.2 Chein algorithm (SQL implementation )
12.3 Implementation of the ISA recovery algorithm
12.4 Building of the concept hierarchy (SQL implementation)
12.5 Building of the concept hierarchy (Python implementation)

13. On the representation of concept hierarchies
14. Querying the concept hierarchy
15. Applications
16. A short bibliography



4 Case study 30 • Classifying objects

Printed 4/6/23

30.1 Introduction and motivation

Let us first read Wikipedia on the main subject of this study [Wikipedia, 2023]:
Formal concept analysis (FCA) is a principled way of deriving a concept hier-
archy or formal ontology from a collection of objects and their properties. Each
concept in the hierarchy represents the objects sharing some set of properties;
and each sub-concept in the hierarchy represents a subset of the objects (as well
as a superset of the properties) in the concepts above it. The term was intro-
duced by Rudolf Wille in 1981, and builds on the mathematical theory of lattices
and ordered sets that was developed by Garrett Birkhoff and others in the
1930s.
Formal concept analysis finds practical application in fields including data
mining, text mining, machine learning, knowledge management, semantic web,
software development, chemistry and biology. 

The technique we will examine in this case study, called Formal Concept Analysis,
or FCA, aims at extracting pertinent concepts from large data sets. Contrary to statis-
tical analysis, it does not rely on numerical computing, such as the extraction of
average and standard deviation, or regression analysis. Rather, it applies symbolic
transformations on simple graphs, based on the mathematical theory of Galois
lattice [Huchard, 2000].

We will explore this concept in various application domains related to knowledge
extraction and processing, notably structuring large sets of elementary objects and
database schema manipulation1.

A short illustration of FCA
We will illustrate FCA by one of its historical applications: eliciting subtype/super-
type hierarchy in a database schema. 

The basic idea is that, when two or more entity types appear to have attributes in
common, these common components can be extracted to form a new entity type,
that is declared a supertype of the former. 

Let us have a look at the schema of Figure 30.1 that describes two data sets,
named ENGINEER and SECRETARY. The very nature of these data sets is irrelevant
in this presentation: they can be structured data files, tables in a standard relational
database, table types in SQL3 object-relational databases, document types, Java
classes, object classes of an ontology or entity types of a database we intend to
develop (what one generally calls its conceptual schema). Let us call them
concepts, in that they denote abstract categories of concrete objects. 

1. The first domain concerns untyped instances (such as messages) for which we try to derive the
most relevant type(s). In the second domain, we deal with objects that are already types, of which
we ignore the instances. Only the first level of abstraction distinguishes these two domains.



5

Printed 4/6/23

To the readers who may feel uncomfortable with this idea of abstraction, we
suggest to consider Figure 30.1 as the schema of a database comprising two tables.
The data rows are the concrete objects while the schema represents their abstraction.

We consider that the concept named ENGINEER represents the class of
employees of a company in charge of identifying and solving technical problems.
Each of them is characterized by an employee Id (represented by attribute Emp#), a
name, a skill level, a salary and a specialty. The other concept is that of SECRE-
TARY, designating the class of the employees in charge of administrative and
logistical tasks. Each secretary has a similar set of attributes: employee Id, name,
salary and the language in which they are most fluent.

Figure 30.1 - An elementary source schema: two concepts have some attributes in 
common

The property of this schema we are interested in is that these concepts share common
attributes, namely Emp#, Name and Salary (in bold face in Figure 30.1). This natu-
rally suggests that all the engineers and all the secretaries are also instances of a
more general concept the attributes of which are these common attributes. We
should assign a name to this new concept. It seems natural to call Employees the
category of objects 

– that all have an employee number, a name and a salary?
– and that comprises two subcategories, engineers and secretaries?

Hence the concept EMPLOYEE.
Now, our schema comprises three concepts, EMPLOYEE, ENGINEER and

SECRETARY. EMPLOYEE is more general than both ENGINEER and SECRETARY.
Conversely, the latter are more specific than EMPLOYEE. They often are called the
subconcepts of EMPLOYEE, while the latter is the superconcept of ENGINEER and
SECRETARY. 

The new schema is represented in Figure 30.2. Considering the concrete level, it
states that,

– each engineer is also an employee
– each secretary is also an employee

and, conversely,
– some employees are engineers
– some employees are secretaries.2

SECRETARY
Emp#
Name
Salary
Language

ENGINEER 
Emp#
Name
Level
Salary
Specialty



6 Case study 30 • Classifying objects

Printed 4/6/23

A star structure (a triangle plus three branches) connects the general concept (the
thick branch) with its specific concepts (the thin branches). As to the attributes, we
have migrated the common ones to the general concepts while the attributes
specific to a concept are kept with it. 

Figure 30.2 - Extracting common attributes as a new concept

This schema must be read as follows (example of ENGINEER):
– ENGINEER has five attributes,
– among them, two are specific (also called proper) attributes: Level and

Specialty,
– and three are inherited attributes: Emp#, Name and Salary.

Usually, one represents only the proper attributes of a concept, as shown in the
schema of Figure 30.2. We could also have chosen to show all the attributes, proper
and inherited, of each concept but this would have made the schema less readable. In
a sense, each attribute is located where it is the most relevant.
Four important observations to keep in mind for the following discussion:

– The restructuring operation creates a hierarchy of concepts.
– This restructuring operation is only valid if attributes with the same name in the

specific concepts convey the same meaning. Should SECRETARY attribute
Language be named Specialty, the resulting schema would have been quite
different and most probably less informative.

– Being based on purely symbolic (more precisely character string) manipula-
tions, this operation can be automated3.

– In set theoretic terms, the new concept is built as the union of existing concepts
and its attributes are the intersection of those of the existing concepts.

2. If Figure 30.2 were to represent a database schema, we would have to specify two additional
properties: (1) whether an employee can be neither an engineer nor a secretary, and (2) whether
employees and secretaries form separate sets. We will leave these properties aside.
3. Except of course for the naming of the new concepts, which will be discussed in a further
section.

   

SECRETARY
Language

EMPLOYEE 
Emp#
Name
Salary

ENGINEER 
Level
Specialty



7

Printed 4/6/23

Note

The subconcept/superconcept relation that holds among the set of concept is an
important feature of all the knowledge representation systems (the conceptual
schema of databases being one of them). The linguistic interpretation of this rela-
tion often takes the form each instance of A is an instance of B, abbreviated to each
A is a B. Hence the synthetic name is-a, or any variation such as ISA, that is
commonly used to denote this type of relation.

The solution is not always as straightforward

Sometimes, things can get more tricky. Consider for example the initial schema of
Figure 30.3, which is an extension of that of Figure 30.1. While ENGINEER and
SECRETARY have common attributes, it appears that ENGINEER also has some
common attributes with MANAGER, but those are different from the first set:
{Emp#,Name,Salary} for the first two concepts and {Emp#,Name,Level} for the last
two concepts. 

 

Figure 30.3 - A source schema comprising three concepts

A first attempt would consist in completing the transformed schema of Figure 30.2
with the concept MANAGER. We then observe that MANAGER and EMPLOYEE have
two attributes in common, namely Emp# and Name. Applying the reasoning we used
above, we create a new concept, PERSONNEL, that collects these common
attributes. PERSONNEL has two subconcepts: MANAGER and EMPLOYEE, as shown
in Figure 30.4.

The result is not quite satisfying. Indeed, MANAGER and ENGINEER have
common attribute Level, that cannot be moved to PERSONNEL nor to EMPLOYEE
and that is left unprocessed.

The correct transformation relies on the introduction of a new concept of which
MANAGER and ENGINEER are the subconcepts. Let us call it OPERATIONAL and let
it be assigned attribute Level. Since MANAGER also have attributes Emp# and Name,
we specify OPERATIONAL as a subconcept of PERSONNEL: in this way, OPERA-
TIONAL inherits these attributes that also are inherited by MANAGER (Figure 30.5). 

This schema shows only the proper attributes of each concept. In schema 30.6,
we have also introduced the inherited attributes. For each concept, it shows the
proper (in blue) and inherited attributes. This view is less concise but it makes the
composition of all concepts explicit.

SECRETARY 
Emp#
Name
Salary
Language

ENGINEER 
Emp#
Name
Level
Salary
Specialty

MANAGER 
Emp#
Name
Department 
Level



8 Case study 30 • Classifying objects

Printed 4/6/23

Figure 30.4 - Extracting common attributes: a first tentative

Figure 30.5 - Extracting common attributes: a more satisfying solution

Naming the concepts generated
The assignment of a semantically expressive name to each new concept is usually
based on common sense and on domain knowledge. In some cases the nature of the
proper attributes of a concept may suggest its name. For example, in the schema of
Figure 30.5, considering that the concept EMPLOYEE represents people who receive
a salary, we may have more appropriately renamed it SALARIED.

The use of AI technologies could be considered, such as domain ontologies or
intelligent conversational systems such as ChatGPT or currently emerging competi-

   

   

SECRETARY 
Language

PERSONNEL 
Emp#
Name

EMPLOYEE 
Salary

ENGINEER 
Level
Specialty

MANAGER 
Department 
Level

   

      

SECRETARY 
Language

PERSONNEL 
Emp#
Name

MANAGER 
Department 

OPERATIONAL 
Level

ENGINEER 
Specialty

EMPLOYEE 
Salary



9

Printed 4/6/23

tors (2023). However, such techniques go well beyond the scope of this (modest)
study.

On this issue, it should be observed that naming new concepts is not always
necessary or even useful. In the applications that illustrate FCA techniques in the
scientific literature, a concept is defined entirely by a set of objects and a set of
attributes. Thus, what we have called EMPLOYEE in Schema 30.5 will simply be
identified as the unnamed concept

(ENGINEER,SECRETARY)x(Emp#,Name,Salary)

Figure 30.6 - The final schema showing both the proper and inherited attributes

Some words of conclusion

Starting from the composition (the set of their attributes) of initial concepts
MANAGER, ENGINEER and SECRETARY, we have discovered, through symbolic (or
formal) techniques, three new concepts of interest. This is the essence of the Formal
Concept Analysis and the explanation of its name.

Though we have not distinguished them explicitly, the construction of the final
schema comprises two distinct phases, that require specific reasonings and to which
we will devote different algorithms:

– finding the concepts,
– building the subconcept/superconcept hierarchy.

   

      

SECRETARY 
Emp#
Name
Salary
Language

PERSONNEL 
Emp#
Na me

MANAGER 
Emp#
Name
Department 
Level

OPERATIONAL 
Emp#
Name
Leve l

ENGINEER 
Emp#
Name
Specialty
Salary
Level

EMPLOYEE 
Emp#
Name
Salary



10 Case study 30 • Classifying objects

Printed 4/6/23

The way we have built the final schema is fairly intuitive and obviously cannot solve
more complex problems that may comprise thousands of initial objects4. So, we
have to design a systematic procedure to discover the implicit concepts, which is our
goal in the next sections. 

What next?

In the next section (Section 30.2), we analyze the general principles of FCA that
underlie the discovery of the concepts. In Section 30.3 we study the building of the
concept hierarchy. In Section 30.4, we develop a systematic procedure to discover
the concepts. 

Section 30.5 describes the Chein algorithm, one of the most popular technique
that translates this procedure. This algorithm is implemented in SQL in Section 30.6
and in Python in Section 30.7. The implementation in SQL and Python of the
building of the concept hierarchy is described in Section 30.8. A alternative algo-
rithm, specially designed for database schema processing, is described in Section
30.9.

Section 30.10 is devoted to the presentation of experimental material (a portfolio
of typical problems and four SQL scripts to solve them) while Section 30.11 evalu-
ates the performance of the four implementations according to qualitative and
quantitative criteria. Section 30.12 suggests some ways to improve the execution
times of the algorithms. 

About the scope of this study

It is important to recall the scope of the series of case studies in which this one is
part. Their objective is to examine and evaluate the expressive power of database
concepts and technologies in modeling and solving a wide variety of problems. They
do not constitute a theoretical statement or a state of the art of the problem domain
they address. Based on one or more representative examples, each study attempts to
derive modeling and solving principles that can help readers and practitioner feel
more comfortable in dealing with such problems. 

In this study, we describe a very small subset of the FCA domain that is far from
encompassing all aspects of it. In particular, the mathematical basis of FCA will be
limited to the part required to describe the selected problems and to develop solu-
tions and their implementation.

4. Databases often include hundreds of tables (the figure in Figure 30.3 includes only three). The
analysis of emails or tweets, tagged with keywords (their attributes), can lead to the processing of
several thousands of messages.



11

Printed 4/6/23

30.2 Principles of FCA - Finding the concepts

The techniques of Formal Concept Analysis contribute to two objectives: finding the
concepts that underlie the source data set and ordering these concepts in order to
build the concept hierarchy. In this section, we explore the first objective.

In the FCA world, the initial problem is specified as a set objects, each object
being assigned a set of attributes. In the examples examined in the previous section,
these initial objects already were concepts. This is due to the particular nature of the
problem domain, that of data structures. FCA considers a more general domain, in
which a concept is a subset of objects that share common attributes. Some objects
may become concepts while others will be absorbed by new concepts and therefore
will disappear.

This initial problem is called the Formal context. It comprises three parts, G, a set
of objects, M, a set of attributes5 and I(G,M), the attribute assignment relation. The
fact (g,m) ∈ I indicates that object g has attribute m. Actually, the only interesting
part of this specification is relation I (in this section we ignore objects without
attributes and attributes that do not appear in any object). As this relation is binary, it
can be represented by a matrix6 as illustrated by Figure 30.7, that expresses the
schema of Figure 30.3 (we ignore the gray cells for now). The object and attribute
names have been abbreviated to fit in the limited width of this page.

Each row represents a source object and its attributes while each column repre-
sents a source attribute and all the objects it is associated with. A cross at the
intersection of an object row and an attribute column (i.e., a cell) indicates that this
object has this attribute. The matrix shows graphically that the SEC object has the
attributes Emp, Nam, Sal and Lan. It also shows that the Sal attribute is assigned to
the ENG and SEC objects.

Figure 30.7 - Matrix representation of a formal context

We postulate that the order of the rows and that of the columns are irrelevant. If we
swap two rows or two columns, the resulting matrix provides exactly the same infor-
mation.

Relation I can be given various equivalent representations. With database struc-
ture in mind, we could think of a direct translation of the mathematical expression:

5. These symbols come from their German names: G = Gegenstände; M = Merkmale.
6. Called incidence matrix by mathematicians.

Emp Nam Dep Lev Sal Spe Lan

MAN x x x x

ENG x x x x x

SEC x x x x



12 Case study 30 • Classifying objects

Printed 4/6/23

create table I(G varchar(256),M varchar(256));
insert into I values ('MAN','Emp'),('MAN','Nam'), ...;

We will sometimes use a more concise form in which we associate with each object
name the list of the attribute names ; a little more tricky to manipulate by algorithms
but better fitted to manual data entry:

create table I(G varchar(256),M varchar(256));
insert into I values ('MAN','Emp,Nam,Dep,Lev'), ...;

Rectangles
The key concept of FCA is the rectangle. A rectangle is made up of a set of objects
A and a set of attributes B such that all the cells defined by their intersection include
a cross. It will be noted AxB. Since the order of the rows and the columns are mean-
ingless, the rows (and the columns) of a rectangle need not be contiguous. For
example, in the matrix of Figure 30.7, (ENG,SEC)x(Nam,Sal) is a rectangle.
(SEC)x(Emp,Nam,Sal,Lan) and (MAN)x(Dep) are also valid rectangles. Two opera-
tors will help us reason about the properties of rectangles:

– att(A), where A is a set of objects, denotes the set of attributes shared by all
the objects in A

– obj(B), where B is a set of attributes, denotes the set of objects which share
all the attributes in B.

Some examples:
att(MAN) = (Emp,Nam,Dep,Lev) 
att(MAN,SEC) = (Emp,Nam) 
obj(Nam,Sal) = (ENG,SEC) 

Extending a rectangle
Sometimes, a rectangle can be extended by adding to it either an object or an
attribute. For example, if we add attribute Emp to rectangle (ENG,SEC)x(Nam,Sal),
we get the new valid rectangle (ENG,SEC)x(Emp,Nam,Sal) shown on grey back-
ground in Figure 30.7. The condition is that the additional attribute appears in (at
least) all the objects of the rectangle. Conversely, we can add an object to a rectangle
if it is assigned (at least) all the attributes of this rectangle. Following these rules, we
could not add object MAN (which has no Sal attribute) nor attribute Lan (which is not
assigned to ENG) to this rectangle. 

Maximal rectangles and concepts
Among the (many) rectangles of the matrix, the maximal rectangles are particularly
remarkable. A rectangle is maximal if there is no way to extend it. Considering A a
set of objects and B a set of attributes, rectangle AxB is maximal if, and only if,



13

Printed 4/6/23

att(A) = B  and  obj(B) = A
Explanation:

The first part tells that all the attributes of set B are shared by all the objects of set
A; in other words, there is no attribute outside of B that would be shared by all the
objects of A. According to the second part, there is no object outside of A that
would be assigned all the attributes of B. Therefore, there is no object and no
attribute that can be added to a maximal rectangle.

Now, the fundamental definition of FCA: 
in a definite context, each concept is a maximal rectangle and each
maximal rectangle is a concept. 

The intuitive idea behind this definition is that a set of objects that all share the same
set of attributes (and this, exclusively), surely reveals a semantic entity hidden
among all the objects of the context. 

So, we are able to state our first objective, finding the maximal rectangles in a
formal context.

Finding concepts by visual inspection
Carefully examining the matrix of Figure 30.3 to identify its maximal rectangles is a
nice exercise to check if we have understood the definition of a concept. If we try,
we should find this set of concepts,

(MAN)x(Emp,Nam,Dep,Lev)
(SEC)x(Emp,Nam,Sal,Lan)
(ENG)x(Emp,Nam,Lev,Sal,Spe)
(MAN,ENG)x(Emp,Nam,Lev)
(ENG,SEC)x(Emp,Nam,Sal)
(MAN,ENG,SEC)x(Emp,Nam)

of which we derive the graphical representation of figure 30.8.

Figure 30.8 - Graphical representation of the concepts

SEC 
Emp
Nam
Sal
Lan

MAN,ENG,SEC 
Emp
Nam

MAN,ENG 
Emp
Nam
Lev

MAN 
Emp
Nam
Dep
Lev

ENG,SEC 
Emp
Nam
Sal

ENG 
Emp
Nam
Spe
Sal
Lev



14 Case study 30 • Classifying objects

Printed 4/6/23

Merging two rectangles
To formalize a procedure to find the concepts of a context, we need a new basic
operator: merging two concepts.

If we find two rectangles A1xB1 and A2xB2 such that sets B1 and B2 have some
common attributes (i.e., their intersection is not empty), then we can merge them to
derive a new valid rectangle defined as follows:

(A1 ∪ A2)x(B1 ∩ B2)
 We can find several examples of this pattern in the set of concepts we have found in
the previous section. Let us consider this one,

(ENG)x(Emp,Nam,Lev,Sal)
(SEC)x(Emp,Nam,Sal,Lan)

Since their attribute parts have three common attributes, we can merge them to
derive this concept:

(ENG,SEC)x(Emp,Nam,Sal)

If we take a look at the matrix of Figure 30.7, we observe that this derived concept is
precisely the gray rectangle. 

As another example, the following concepts, that share attributes Emp and Nam,
(MAN,ENG)x(Emp,Nam,Lev)
(ENG,SEC)x(Emp,Nam,Sal)

can be merged to produce this one:
(MAN,ENG,SEC)x(Emp,Nam)

Degenerated merging
Interestingly, if B1 = B2, the merging operator reduces to 

(A1 ∪ A2)x B1
which is the precise description of the extension of a rectangle by adding an object,
or, more generally, a set of objects.
This rule can be extended to B1 ⊆ B2, with the same result: a new rectangle defined
by (A1 ∪ A2)x B1. We do not know whether this new rectangle is maximal, but we
know for sure that A1 x B1 definitely is not a maximum rectangle and will not
appear in the final schema. 

Processing non-binary relations
The FCA is based on a binary relation, I(G,M), indicating whether the object g ∈ G
is characterized by the attribute m ∈ M. For example, in a context describing the
characteristics of a set of people, we distinguish those who have a university degree
from those who do not. However, we would find it more interesting to also know the



15

Printed 4/6/23

faculty in which they obtained this degree. In other words, we are interested not only
in the existence of an attribute but also in its value for a definite object. Ideally, we
would need a ternary extension of I defined as I'(G,M,V) where V is a set of
values. So, the context would tell us that Smith has no university degree and Johnson
has a university degree in Humanities.

This can be done by replacing the initial single attribute by a series of attributes
the names of which include a value7. Of course, this only works if the set of values
is not too large. In the example described above, the attribute

UDegree

could be expanded into this series of attributes
UDegree:Arts, UDegree:Classics, UDegree:Humanities, etc.

30.3 Principles of FCA - Building the concept hierarchy

The second step of FCA aims to create the subconcept/superconcept hierarchy. We
will see that it is the easy part of the FCA procedure. 

If we examine very carefully the schema of figure 30.8, and if we keep in mind
the concept hierarchy we built manually in figure 30.6, we can suggest a rule to
automatically derive this hierarchy. Actually, two equivalent rules work equally
well. Considering the pair of concepts C1 ≡ A1xB1 and  C2 ≡ A2xB2, C1 is a
subconcept of C2 if either condition is met:
A1 ⊂ A2
B1 ⊃ B2

These rules rely on the assumption that the inclusion relation is asymmetric, i.e., two
concepts cannot have the same object part or the same attribute part. In other words,
the concepts have distinct object parts as well as distinct attribute parts.

Let us remind the concepts of figure 30.8:

(MAN)x(Emp,Nam,Dep,Lev)
(SEC)x(Emp,Nam,Sal,Lan)
(ENG)x(Emp,Nam,Lev,Sal,Spe)
(MAN,ENG)x(Emp,Nam,Lev)
(ENG,SEC)x(Emp,Nam,Sal)
(MAN,ENG,SEC)x(Emp,Nam)

From the application of the rules, we conclude that,

(MAN) is a subconcept of (MAN,ENG)
(MAN) is a subconcept of (MAN,ENG,SEC)

7. This technique is known as One-hot Encoding (https://en.wikipedia.org/wiki/One-hot) or
Conceptual Scaling [Kuznetsov 2015].



16 Case study 30 • Classifying objects

Printed 4/6/23

(SEC) is a subconcept of (ENG,SEC)
(SEC) is a subconcept of (MAN,ENG,SEC)
(ENG) is a subconcept of (MAN,ENG)
(ENG) is a subconcept of (ENG,SEC)
(ENG) is a subconcept of (MAN,ENG,SEC)
(MAN,ENG) is a subconcept of (MAN,ENG,SEC)
(ENG,SEC) is a subconcept of (MAN,ENG,SEC)

Being transitive, the inclusion relation includes many uninteresting couples. For
instance, knowing that (MAN) is a subconcept of (MAN,ENG) and (MAN,ENG) is a
subconcept of (MAN,ENG,SEC), there is no need to state that (MAN) is a subconcept
of (MAN,ENG,SEC). By removing these pairs, we get the transitive reduction of the
inclusion relation, that is,

(MAN) is a subconcept of (MAN,ENG)
(SEC) is a subconcept of (ENG,SEC)
(ENG) is a subconcept of (MAN,ENG)
(ENG) is a subconcept of (ENG,SEC)
(MAN,ENG) is a subconcept of (MAN,ENG,SEC)
(ENG,SEC) is a subconcept of (MAN,ENG,SEC)

The resulting schema is shown in figure 30.9. Both their proper and inherited
attributes are associated with each concept.

30.4 Looking for a systematic procedure

Let us go back to the source schema 30.3, of which Figure 30.10 is a copy (with
abbreviated names). It forms a formal context comprising three objects (we do not
yet consider them concepts) that can be represented by these rectangles:

(MAN)x(Emp,Nam,Dep,Lev)
(ENG)x(Emp,Nam,Spe,Sal,Lev)
(SEC)x(Emp,Nam,Sal,Lan)

30.4.1 Finding the concepts
We will apply a bottom-up procedure that starts from these three objects.

• Step 1

The source objects having different sets of attributes and none of these attribute sets
being a strict subset of the others, each of these objects corresponds to a maximal
rectangle and can be declared a concept. 



17

Printed 4/6/23

Figure 30.9 - The concept hierarchy is built from the transitive reduction of the inclu-
sion relation of the object parts of the concepts

Figure 30.10 - Reminder of the source objects of figure 30.3

• Step 2

Then, we examine all the pairs of these rectangles to identify their common
attributes:

– (MAN) and (ENG): Emp, Nam, Lev
– (MAN) and (SEC): Emp, Nam
– (ENG) and (SEC): Emp, Nam, Sal

We create a rectangle by merging the rectangles of each of these pairs as follows:
– its name is the union of the names of the object sets of the pair

   

      

SEC 
Emp
Nam
Sal
Lan

MAN,ENG,SEC 
Emp
Nam

MAN,ENG 
Emp
Nam
Lev

MAN 
Emp
Nam
Dep
Lev

ENG,SEC 
Emp
Nam
Sal

ENG 
Emp
Nam
Spe
Sal
Lev

SEC 
Emp
Nam
Sal
Lan

MAN 
Emp
Nam
Dep
Lev

ENG 
Emp
Nam
Spe
Sal
Lev



18 Case study 30 • Classifying objects

Printed 4/6/23

– its attributes are the intersection of the names of the attribute sets of the pair,
provided this intersection is not empty

So, we create three new rectangles,

(MAN,ENG)x(Emp,Nam,Lev)
(MAN,SEC)x(Emp,Nam)
(ENG,SEC)x(Emp,Nam,Sal)

They are depicted in Figure 30.11.
Since the attribute parts of these rectangles are different, there is no need to

merge them. Furthermore, when generating one of the new rectangles, no source
rectangles had an attribute part that was identical to that of the generated rectangle
(otherwise we could have discarded this source rectangle).

Figure 30.11 - Merging pairs of source rectangles - First level

• Step 3

So far, so good. Now, we examine each pair of the new rectangles and we consider
their common attributes:

– (MAN,ENG) and (MAN,SEC): Emp,Nam
– (MAN,SEC) and (ENG,SEC): Emp,Nam
– (MAN,ENG) and (ENG,SEC): Emp,Nam

that are depicted in Figure 30.12.

The attribute parts of each pair intersect, so that a new rectangle can be generated
from this pair (Figure 30.12):

(MAN,ENG,SEC)x(Emp,Nam)
(MAN,SEC,ENG)x(Emp,Nam)
(MAN,ENG,SEC)x(Emp,Nam)

SEC 
Emp
Nam
Sal
Lan

MAN,SEC 
Emp
Nam

MAN,ENG 
Emp
Nam
Lev

MAN 
Emp
Nam
Dep
Lev

ENG,SEC 
Emp
Nam
Sal

ENG 
Emp
Nam
Spe
Sal
Lev



19

Printed 4/6/23

Figure 30.12 - The final schema, before cleaning

• Step 4

These three rectangles happen to be exactly the same. We only need one! We notice
that the attribute part of (MAN,SEC), i.e., (Emp,Nam), is the same as that of the
rectangles it helped generate. Therefore, this source rectangle is not maximal and we
can discard it. 

The top level consists of only one (maximal) rectangle, which completes the
process. The final schema comprises all the rectangles that have not been discarded
and that are interpreted as the six concepts of Figure 30.13. 

30.4.2 Building the concept hierarchy
The objective is to build a binary relation ISA(Sub,Super) on the set of concepts such
that if (C1,C2) ∈ ISA, then C1 is a subconcept of C2. We suggest a simple and intui-
tive technique in two steps. 

In the first one, we examine each pair (C1 ≡ A1xB1, C2 ≡ A2xB2) of concepts and
we check whether the object part of one of them is included in the object part of the
other. If A1 ⊂ A2 then (C1,C2) ∈ ISA.

The second step discards the transitive couples from ISA, that is, it computes its
transitive reduction. For each couple (Cs,CS) of ISA, we search ISA for any pair of
couples ((C1s,C1S), (C2s,C2S)) such that 

Cs = C1s and C1S = C2s and C2S = CS

SEC 
Emp
Nam
Sal
Lan

MAN,SEC 
Emp
Nam

MAN,ENG,SEC 
Emp
Nam

MAN,ENG,SEC 
Emp
Nam

MAN,SEC,ENG 
Emp
Nam

MAN,ENG 
Emp
Nam
Lev

MAN 
Emp
Nam
Dep
Lev

ENG,SEC 
Emp
Nam
Sal

ENG 
Emp
Nam
Spe
Sal
Lev



20 Case study 30 • Classifying objects

Printed 4/6/23

Figure 30.13 - The six concepts of the final schema

If we find such a pair of couples, then (Cs,CS) is transitive and is discarded. The ISA
couples that remain form the desired transitive reduction. Deriving the subconcept/
superconcept relation of the demonstration case of Figure 30.13 is immediate (see
Figure 30.9).

30.5 The Chein algorithm

The operations described in the preceding section can be assembled and synthesized
into a formal procedure, which we will call the Chein algorithm. The mathematical
foundation of this algorithm has been described (more precisely sketched) in a
research note by M. Chein [Chein, 1969] and has been discussed in many further
references, for example in [Sarmah, 2013].

We will develop two implementations of this algorithm. The first one expresses it
into a sequence of SQL queries. The second one is a direct translation in Python.  

30.5.1 Analysis of the algorithm
The manual procedure has a bottom-up layered structure that is general enough to be
formalized as an iterative algorithm. Each iteration creates a new level of rectangles
based on the analysis of the set of rectangles generated by the previous level. 

Let us call R1 the set of the rectangles created in the previous level and R2 the set
of rectangles being created in the current level. 

The content of R1 in the first level is made up of the rectangles created on the
objects of the context. 

When the processing of the current level starts, the set R1 comprises rectangles,
some of which may be maximal, and the set R2 is empty. Then, we consider all the

SEC 
Emp
Nam
Sal
Lan

MAN,SEC,ENG 
Emp
Nam

MAN,ENG 
Emp
Nam
Lev

ENG,SEC 
Emp
Nam
Sal

ENG 
Emp
Nam
Spe
Sal
Lev

MAN 
Emp
Nam
Dep
Lev



21

Printed 4/6/23

pairs of distinct rectangles of R1. Let ri = (gi)x(mi) and rj = (gj)x(mj) be such
a pair under examination. When we compare their structure, the following cases
may arise:

– These rectangles share no common attributes (mi ∩ mj is empty): we abandon
this pair.

– These rectangles have some common attributes, denoted by mij = mi ∩ mj:
there is an opportunity to merge them into a new rectangle rij = (gij)x(mij),
where gij = gi ∪ gj. Then, we consider two situations:
• there is no rectangle in R2 that has the same attribute part mij: we merge ri

and rj to add the new rectangle rij to R2.
• on the contrary, R2 happens to already include a rectangle rk = (gk)x(mk),

such that  mk =  mij: we augment rk with rij, which gives it this new compo-
sition: rk = (gk∪ gij)x(mk).

When rectangle rij has been either added or merged into rk, we compare it to its
source rectangles ri and rj from R1. First, we observe that gij is always larger than
gi and gj.8 Let us suppose that mi = mij. This means that the new rectangle rij
extends the source rectangle ri. Therefore, ri is not maximal and will not be part of
the solution. To state this fact, we mark ri as discarded. Otherwise, if mi ≠ mij, ri
still is a potential maximal rectangle. At the end of the current level, all the rectan-
gles of R1 that have not been marked as discarded definitely are maximal rectangles.

When, at the completion of a level, R2 is empty or contains one rectangle only,
the analysis is completed. This last rectangle, if any, is maximal.

All the maximal rectangles identified in the successive levels of the algorithm
form the concepts that can be extracted from the source context.

Before developing implementations of this algorithm, let us synthesize the main
operations carried out during each level of the FCA algorithm:

Let set R, initially empty, contain the solution, that is, all the maximal rectangles.
for each pair (ri, rj) of distinct rectangles in R1 that match
– we merge them into rectangle rij = (gi∪ gj)x(mi∩ mj) 
– we search the current state of R2 for another rectangle rk with the same attribute

part as rij; if we find one we extend rk with rij; otherwise, we add rij to R2 
– if one of the arguments ri or rj of the merging has the same attribute part as rij,

we discard it from R1

At the end of the level, all the rectangles in R1 that have not been discarded are
maximal rectangles and therefore are saved in R. 
In the next level, R2 replaces R1 and is emptied

8. At any time of the analysis process, all the rectangles in R1 have distinct g parts by construc-
tion. So, their union is always larger that each of them.



22 Case study 30 • Classifying objects

Printed 4/6/23

30.5.2 Procedural expression of the Chein algorithm
Now, the Chein algorithm can be precisely structured as an iterative procedure in
which each iteration builds a level9. During the current iteration, that creates the
current level, we consider three sets:

– R1: the set of rectangles built by the preceding iteration
– R2: the set of rectangles being built by the current iteration
– R: the set of maximal rectangles identified so far.

R = {}

Initially, R2 contains the rectangles created from each object of the formal 
context and its attributes; they are not marked as discarded.

while R2 comprises at least two rectangles:
R1 = R2

R2 = {}

for each pair (ri,rj) of distinct rectangles of R1:
mij =  mi ∩ mj 
gij =  gi ∪ gj
if mij ≠ {}:

if R2 includes a rectangle rk  = (gk)x(mij):
extend rk with gij (i.e., rk  = (gk∪ gij)x(mk))

else
add rectangle (gij)x(mij) to R2

endif
if mi = mij: discard ri from R1 endif
if mj = mij: discard rj from R1 endif

endif
endfor
add non discarded rectangles of R1 to R

endwhile
add R2 to R

Script 30.1 - Pseudo-code of the Chein algorithm

9. This version of the Chein algorithm is a bit different from that that can be found in the litera-
ture, where the matching pairs are built from undiscarded rectangles of R1. Unfortunately, this
algorithm is erroneous. A rectangle that has just been tagged as 'discarded' cannot be ignored
since it may still generate other matching rectangles.



23

Printed 4/6/23

30.6  An SQL implementation of the Chein algorithm

Rewriting the Chein algorithm into an SQL procedure would be a very bad idea.
SQL being a set-oriented language, a modification query (update, delete,
insert-select) is designed to work at its best on a set of rows, not on individual
rows. Such an SQL algorithm, qualified in the database jargon of row-at-a-time, is
likely to be a variant of the Python procedure in which each access to, and modifica-
tion of, R1 and R2 rows has been replaced by a single-row SQL query, which would
be terribly inefficient! 
Converting the row-at-a-time algorithm into a set-oriented algorithm is fairly
straightforward provided we look at the problem from a slightly different angle. 

Within a definite level, we will have to carry out four basic operations:
1. extracting matching pairs from R1 to form new rectangles and storing them

into R2
2. updating the rectangles of R2 that have the same attribute part as some new

rectangles
3. discarding the rectangles of R1 that were one of the two sources of some new

rectangle of R2
4. saving the undiscarded rectangles of R1 in R.

The main difference between procedural and SQL algorithms is that the processing
of matching pairs, which is immediate as soon as each of them has been discovered
in the procedural algorithm, is delayed until all of them have been discovered in the
set-oriented algorithm. Both versions yield the same result.

Before developing the script based on the set-oriented algorithm, we must discuss
the best way to represent and process sets of values in SQL.

30.6.1 Operations on sets in SQL
Let us recall that a rectangle is defined as a pair of sets: a set of objects and a set of
attributes. The Chein algorithm applies three operations on these sets:

• intersection (of attribute sets in R1)

• union (of object sets in R1 and R2)

• checking equality (of attribute sets in R2 or between R2 and R1)

SQL provides native set operators to derive the union, the intersection and the differ-
ence of two sets. 

Let us consider that the relation I of the source context is implemented by the
table OBJ_has_ATT(ObjID,AttID). The set of attributes of object 'o' is expressed by:
select AttID from OBJ_has_ATT where ObjID = 'o'

and the intersection of the attribute sets of objects 'o1' and 'o2':



24 Case study 30 • Classifying objects

Printed 4/6/23

select AttID from OBJ_has_ATT where ObjID = 'o1'
   intersect
select AttID from OBJ_has_ATT where ObjID = 'o2'

Finally, objects 'o1' and 'o2' can be merged if:

exists(select AttID from OBJ_has_ATT where ObjID = 'o1'
         intersect
       select AttID from OBJ_has_ATT where ObjID = 'o2')

Now, extracting the pairs of objects that can be merged is straightforward:

select O1.ObjID, O2.ObjID
from  OBJ_has_ATT O1, OBJ_has_ATT O2
where exists(select AttID from OBJ_has_ATT
             where  ObjID = O1.ObjID
               intersect
             select AttID from OBJ_has_ATT
             where  ObjID = O2.ObjID);

This query is fine to cope with individual objects but does not help clearly if we
want to process rectangles: objects have a unique identifier (ObjID) but rectangles
have no obvious way to uniquely identify them. For examples, these rectangles are
distinct:

('o1','o2')*('a1','a2') and ('o1','o2')*('a1','a2','a3')

similarly, these ones are also distinct:

('o1','o2')*('a1','a2') and ('o1','o2','o3')*('a1','a2')

So, in general, neither the object part nor the attribute part alone can be used as rect-
angle identifier. We will experience similar problems with the union of sets.

Checking the equality of two sets is a bit tricky. Given sets S1 and S2, one of the
most popular equality expression checks two properties: there is no element of S1
that is not in S2, and S1 and S2 have the same size. Let us check if table
OBJ_has_ATT includes objects with the same set of attributes:
select distinct O1.ObjID,'equal',O2.ObjID
from   OBJ_has_ATT as O1,
       OBJ_has_ATT as O2
where  O1.ObjID < O2.ObjID
and  not exists (select *
                 from   OBJ_has_ATT
                 where  ObjID = O1.ObjID
                 and    AttID not in (select AttID
                                      from   OBJ_has_ATT
                                      where  ObjID = O2.ObjID))
and  (select count(*) from OBJ_has_ATT where ObjID = O1.ObjID)
   = (select count(*) from OBJ_has_ATT where ObjID = O2.ObjID);



25

Printed 4/6/23

The query examines the self-join of OBJ_has_ATT (denoted by aliases O1 and O2)
and extracts its ObjID values if:

– these values are in increasing order, an optimization that ensures that (1) no
object is compared to itself and (2) if two objects are equivalent, only one of
them is provided,

– all the attributes of object O1 also are attributes of object O2,
– objects O1 and O2 have the same number of attributes.

This query has a theoretical complexity of O(N3),10 where N is the size of
OBJ_has_ATT, which is not particularly scalable. Executed on table OBJ_has_ATT
with 660 rows (60 objects with exactly 11 attributes), this query runs in  31 s., to find
the single equality. However, an index created on column ObjID allows this time to
drop to 3 s, which still is very high.

Solving a basic problem: identifying a set
Basically, the problem lies in finding a convenient way to identify a set of values
among a set of such sets. A particular aspect of this problem is to determine whether
two sets are the same, that is, whether each element of one of them also belongs to
the other one. So, we must find a unique value11 that is representative of a set and
that unambiguously denotes this set among other similar sets.

To clarify the discussion, we call value-set any set of values and S the set of
value-sets. In addition, we admit that the values of a set can be ordered, which is the
case of character, numeric and date/time values for instance. By definition, all the
value-sets are distinct in S. 

We distinguish two cases.
– The sets in S are disjoint. So, any element of a value-set can be used to identify

it. We just need a simple rule to unambiguously select this value, for instance,
the first one in ascending order within the value-set.

– The sets in S are not disjoint. The only reliable identifier of a value-set is its
own composition or a bijective function of it, such as its secure hash12. To
allow scalar operations on value-sets, we choose to derive a character string
from the composition of each set by concatenating the ordered values of the set,
separated by a character that cannot appear in the values.

Consider for example attribute set {Emp,Nam,Lev} that we represent by
value-set {'Emp','Nam','Lev'}. If no attribute name may include symbol
',', this value-set can be represented by character string 'Emp,Nam,Lev'.
Comparing two value-sets represented in this way is not easy. For instance, one
must determine that identifiers 'Emp,Nam,Lev' and 'Nam,Emp,Lev' denote

10. The table is joined twice with itself.
11. Also called the signature of the set.
12. Hashing techniques and their properties are discussed in the case study Blockchains.



26 Case study 30 • Classifying objects

Printed 4/6/23

the same set. A simple way to solve this problem is to order the values in the
identifier. So, both identifiers are converted into 'Emp,Lev,Nam' and denote
the same set.

Since the sets we will compare in FCA algorithms generally are not disjoint, we will
adopt the second representation technique that we will call string-list.

Applying the latter conventions, we translate the rectangles of Figure 30.8 into
couples of set identifiers as follows:

('MAN','Emp,Dep,Lev,Nam')
('ENG','Emp,Lev,Nam,Sal,Spe')
('SEC','Emp,Lan,Nam,Sal')
('ENG,MAN','Emp,Lev,Nam')
('ENG,SEC','Emp,Nam,Sal')
('ENG,MAN,SEC','Emp,Nam')

Set operations revisited

The identifier of a set as a string-list explicitly provides all the content of the set, in
such a way that it can be used instead of the set itself. As a consequence we can base
the FCA implementation on this set representation. All we need is a collection of
specific set operators applied on these representations.

SQL does not include standard string manipulation functions that would easily
simulate such operators as union and intersection applied to string-lists13 Fortu-
nately, all RDBMS allow users to define custom functions, the so-called UDF (for
User-Defined Function). SQLfast offers a set of string-list manipulation UDF. We
will use the following (s, s1, s2 are string-lists; sep is the separator symbol): 

– group_concat2(s,unique,o,dir,sep): replacement for the native
elementary group_concat aggregate function of SQLite. Values v  are
concatenated, separated by symbol sep. Parameter unique specifies the
distinct modifier (0 = duplicates are preserved, 1 = they are discarded).
Parameter o defines the order key and dir specifies the order direction (1 =
ascending, 2 = descending). This form is equivalent to MySQL
group_concat function.

– itemUnion(s1,s2,sep): returns a string-list of all the distinct values
belonging to s1 or s2 (or both).

– itemInter(s1,s2,sep): returns a string-list of all the distinct values
belonging to s1 and s2. 

– itemLen(s,sep): returns the number of values of s.

13. Some SQL engines offer column types structured as arrays of values. The technique
explained here, through UDF, can be implemented in all engines.



27

Printed 4/6/23

30.6.2 SQL implementation of the Chein algorithm
The algorithm proceeds in seven steps, named S1 to S7, among which steps S3 to S7
create the current level and are iterated until all the concepts have been extracted.

S1: Creating the data structures
The table OBJ_has_ATT(ObjID,AttID) will receive the couples of relation I(G,M). Sets
R1, R2 and R are implemented as the eponymous tables R1, R2 and R, in which each
row describes a rectangle through the columns G and M that store the object part and
the attribute part of rectangles, both coded in string-list format. The table R1 also
comprises the column Disc, that indicates whether the rectangle is discarded. The
table R2 includes two additional columns, Source1 and Source2, that reference,
through their G part, the source rectangles in R114. The last table R3 will be justified
later.

 

Script 30.2 - Creating the data structures (column types ignored)

S2: Initializing the process
The relation I(G,M) of the context is loaded in the table OBJ_has_ATT. Then, the
query of Script 30.3 creates the initial state of the table R1 by storing the rectangles
converted from OBJ_has_ATT into string-list format.

 

Script 30.3 - Initialization: loading in R1 the rectangles of size 1 (one rectangle for
each object)

S3: Searching R1 for matching pairs
This is the critical operation of the current level. For each pair (rec1,rec2) of rectan-
gles from R1, the M parts of which have some attributes in common (i.e.,
rec1.M ∩ rec2.M is not empty), a new rectangle is inserted into R2. The G part of the

14. It may be surprising that we adopt the G part of rectangles to identify them, which seems to
contradict the discussion on rectangle identification developed above. Actually, the Chein algo-
rithm ensures that all the rectangles in R1 have distinct G parts.

 create table OBJ_has_ATT (ObjID,AttID);
create table R1 (G,M,Disc);
create table R2 (G,M,Source1,Source2);
create table R3 (G,M,Disc);
create table R (G,M);

insert into R1 
   select ObjID,group_concat2(AttID,1,AttID,1,','),0
   from   OBJ_has_ATT group by ObjID;



28 Case study 30 • Classifying objects

Printed 4/6/23

source rectangles rec1 and rec2 are stored in columns Source1 and Source2 for
further use.

The condition rec1.G < rec2.G ensures that each pair is examined only once.
 

Script 30.4 - Searching R1 for pairs of rectangles that match

S4: Extending rectangles in R2
Now, we analyze the rectangles of R2 to identify those that can be merged. All the
rectangles that share the same M parts are replaced with a new rectangle the G part of
which is the union of the G parts of these source rectangles.

Instead of updating the rectangles in R2 (deleting the source rectangles and
inserting the new one), a supposedly costly operation, we store in table R3 the
merged rectangles as well as the other rectangles that need not to be merged (Script
30.5). The query builds groups of rectangles with the same M value and concate-
nates the G parts within each group. We observe that there is no need to explicitly
cope with single rectangles: they just form groups with one element only and are
automatically copied to R3.

 

Script 30.5 - Merging the rectangles of R2 with the same attribute part

S5: Discarding rectangles in R1
For each rectangle g in table R2, we have memorized the G part of the source rectan-
gles (columns Source1, Source2). If one of the latter has the same M part as g, it is
marked as discarded.

insert into R2
   select itemUnion(rec1.G,rec2.G,','),
          itemInter(rec1.M,rec2.M,',') as MM,
          rec1.G,
          rec2.G
   from   R1 rec1,
          R1 rec2
   where  MM <> ''
   and    rec1.G < rec2.G;

insert into R3
   select group_concat2(G,1,G,1,',') as "G",M,0
   from   R2
   group by M;



29

Printed 4/6/23

 

Script 30.6 - Marking in R1 the rectangles that can be discarded

S6: Saving the maximal rectangles
The rectangles of R1 that have not been marked are saved in table R.

 

Script 30.7 - Saving in R the maximal rectangles of R1

S7: Preparing the next iteration
The consolidated rectangles of R3 are stored in R1 then tables R2 and R3 are cleared.
The iteration of the next level can then start.

 

Script 30.8 - Preparing tables R1, R2 and R3 for the next step

The complete algorithm
Script 30.9 shows the final algorithm assembled from Steps S2 to S715. 

update R1
set   Disc = 1
where (G,M) in (select Source1,M from R2
                  union
                select Source2,M from R2);

insert into R
       select G,M
       from R1
       where Disc = 0;

delete from R1;
insert into R1
       select * from R3;
delete from R2;
delete from R3;

15. We note that the last operation "add R2 to R" of the code of 30.1 has not been translated in
this script. Actually, this operation is implicitly performed by the last iteration. 



30 Case study 30 • Classifying objects

Printed 4/6/23

 

Script 30.9 - The final SQL algorithm

Step S7 revisited
As it is formulated, step S7 is not particularly elegant. Instead of copying the rows of
R3 in table R1, an operation that may be costly, we could simply exchange their
names, at no cost.

Let us call R1 and R3 two variables that contain the physical names of the tables
that play the roles of tables R1 and R3 in each iteration. In the first iteration, the
variable R1 denotes the table R1 and R3 the table R3. In the second iteration, the
variables are swapped: the variable R1 denotes the table R3 (therefore avoiding
copying the rectangles of R3 into R1) and R3 the table R1. And so on in the
following iterations. This is shown in Script 30.10.

insert into R1 
   select ObjID,group_concat2(AttID,1,AttID,1,','),0
   from   OBJ_has_ATT group by ObjID;

while (True);

   extract N1 = select count(*) from R1;
      if ($N1$ = 0) exit;

   insert into R2
      select itemUnion(rec1.G,rec2.G,','),
             itemInter(rec1.M,rec2.M,',') as MM,
             rec1.G,rec2.G
      from   R1 rec1, R1 rec2
      where  MM <> ''
      and    rec1.G < rec2.G;

   insert into R3
      select group_concat2(G,1,G,1,',') as "G",M,0
      from   R2
      group by M;

   update R1
   set Disc = 1
   where (G,M) in (select Source1,M from R2
                     union
                   select Source2,M from R2);

   insert into R select G,M from R1 where Disc = 0;

   delete from R1;
   insert into R1 select * from R3;
   delete from R2;
   delete from R3;

endwhile;



31

Printed 4/6/23

 

Script 30.10 - Improved manipulation of tables R1 and R3 in successive iterations

It is important to note that the Chein algorithm associates with each object not only
its own attributes, but also all its inherited attributes. This remark will make sense in
the comparison between the different implementations of the algorithm.

30.7 A Python implementation of the Chein algorithm

Though the focus of this study is on the use of database concepts and tools to solve
a wide variety of problems, it is interesting to compare this approach to more tradi-
tional problem solving paradigms, in particular those that rely on procedural
languages. To this aim, we have written a Python procedure, FCA_Engine.py, which
is a direct translation of the pseudo-code of Script 30.116. 

insert into R1 
   select ObjID,group_concat2(AttID,1,AttID,1,','),0
   from   OBJ_has_ATT group by ObjID;

set R1,R3 = R1,R3;

while (True);

   extract n1 = select count(*) from $R1$;
      if ($n1$ = 0) exit;

   insert into R2
      select itemUnion(rec1.G,rec2.G,','),
             itemInter(rec1.M,rec2.M,',') as MM,
             rec1.G,rec2.G
      from   $R1$ rec1, $R1$ rec2
      where  MM <> ''
      and    rec1.G < rec2.G;

   insert into $R3$
      select group_concat2(G,1,G,1,',') as "G",M,0
      from   R2
      group by M;

   update $R1$
      set Disc = 1
      where (G,M) in (select Source1,M from R2
                      union
                      select Source2,M from R2);

   insert into R select G,M from $R1$ where Disc = 0;

   delete from $R1$;
   delete from R2;
   set R1,R3 = $R3$,$R1$;

endwhile;



32 Case study 30 • Classifying objects

Printed 4/6/23

We consider that the rectangles of sets R1, R2 and R can be indexed, that is, they
can be accessed by their rank in their set, according to an arbitrary but deterministic
order. The for-endfor loop is then developed into two embedded loops:

for j in range(1,len(R1)):
    # get rectangle rj
    for i in range(0,j):
        # get rectangle ri
        # examine and process the couple (ri,rj)

The main design decision is the way the sets R1, R2 and R are implemented. The
first and simplest idea that comes in mind is to represent them by lists. R1 and R2
become lists of (g,m,d) tuples and R a list of (g,m) couples, where g is the object
string-list, m the attribute string-list and d the discard indicator. 

The structure of the while-endwhile loop can then be translated as shown in
Script 30.11.

 

Script 30.11 - The Chein algorithm - A Python implementation (excerpts)

This code calls these utility functions:
– union(s1,s2): returns (as a string-list) the union of the elements of string-

lists s1 and s2.

16. Actually, FCA_Engine.py is a module that comprises a collection of different implementa-
tions of the Chein algorithm. More on this in Section 30.12 (Improving the performance of the
algorithms).

# list R2 is initialized with the source object:
while len(R2) > 1:
    R1 = R2
    R2 = []
    for j in range(1,len(R1)):
        (gj,mj,d) = R1[j]
        for i in range(0,j):
            (gi,mi,d) = R1[i]
            gij = union(gi,gj)
            mij = inter(mi,mj)
            if mij == '':
                continue
            gk,ik = getRectOfM(R2,mij)
            if gk is not None:
                R2[ik] = (union(gk,gij),mij,0)
            else:
                R2.append((gij,mij,0))
            if mi == mij:
                R1[i] = (gi,mi,1)
            if mj == mij:
                R1[j] = (gj,mj,1)
    addUndiscarded(R,R1)
if len(R2) > 0: 

    addUndiscarded(R,R2)



33

Printed 4/6/23

– inter(s1,s2): returns (as a string-list) the common elements of string-lists
s1 and s2.

– getRectOfM(L,m): search list L for the rectangle whose attribute list is m;
returns its rank in L and its object part; if none found, returns -1 and None.

– addUndiscarded(L1,L2): add to list L1 the rectangles of L2 that have not
been discarded (d == 0). 

30.8 Building the concept hierarchy

Building the concept hierarchy by extracting the inclusion relation of the G parts of
the concepts has been described in Section 30.4.2. We translate the two steps of the
procedure in SQL then in Python.

30.8.1 An SQL implementation
The first step builds in the table ISA the inclusion relation among the G parts of the
concepts of table R. The first two columns, Sub and Super, store the G part of the
subconcept and the superconcept respectively and the third column, Trans, will be
explained later (Script 30.12). Considering two distinct17 rows sub and sup of R, sub
is a subconcept of sup if sup.GE includes sub.G, which is expressed by the UDF
itemInclude(s1,s2,sep), where s1 and s2 are string-lists and sep their value
separator.

 

Script 30.12 -  Building into the table ISA the inclusion relation among the concepts of
R

Now ISA contains the closure of the inclusion relation. To clean it up, we need to
identify and discard the transitive couples. This is the purpose of the query of Script
30.13. For each row r in ISA, we check whether there are two other rows whose
composition is equal to r. If we find such rows, then r is transitive and should be
ignored, which is specified by setting its column Trans to 1. Finally, we delete the
rows for which Trans = 1.

17. G is an implicit unique key of R (easy to prove), so, the condition sub.G <> sup.G ensures
that equality is discarded.

create table ISA(Sub,Super,Trans);

insert into ISA
   select sub.G,sup.G,0
   from   R sub, R sup
   where  itemInclude(sup.G,sub.G,',')
   and sub.G <> sup.G;



34 Case study 30 • Classifying objects

Printed 4/6/23

 

Script 30.13 - Computing the transitive reduction of the hierarchy (SQL version)

30.8.2 A Python implementation
The Python translation shown in Script 30.14 derives the concept hierarchy from the
concepts whose definitions are stored in list R (built by Script 30.11 for example).
The first part stores in list rawInclusion the transitive closure of the inclusion
relation. The second part examines each couple (con1,con2) of rawInclusion:
if R includes another concept con3 such that both (con1,con3) and (con3,con2)
exists in rawInclusion, this couple is transitive and is discarded.

 

Script 30.14 - Computing the transitive reduction of the hierarchy (Python version)

update ISA
set    Trans = 1
where exists (select *
              from  ISA I1, ISA I2
              where I1.Sub = ISA.Sub
              and   I1.Super = I2.Sub
              and   I2.Super = ISA.Super);

delete from ISA where Trans = 1;

rawInclusion = []
for con1 in R:
    for con2 in [con[0] for con in Concepts
                 if con[0] <> con1[0]]:
        if included(con1[0],con2):
            rawInclusion.append((con1[0],con2))

hierarchy = []
for (con1,con2) in rawInclusion:
    status = 'basic'
    for con3 in [con[0] for con in R
                 if con[0] <> con1 and con[0] <> con2]:
        if (con1,con3) in rawInclusion
            and (con3,con2) in rawInclusion:
            status = 'transitive'
            break
    if status == 'basic':
        hierarchy.append((con1,con2))



35

Printed 4/6/23

30.9 An alternative FCA implementation: ISA recovery

The literature provides more than a dozen concept extraction techniques, among
which the Chein family, that formalizes an intuitive manual procedure (see Section
30.4), is the most used in FCA tutorials.

We will now describe an alternative technique that has been applied successfully
in the field of database engineering, in particular to database reverse engineering18.
Its objective is to help recover the conceptual schema of a legacy database. Starting
from the schema of an existing, sometimes several decades old, database or set of
files, this technique identifies a hierarchy of entity types that represents its seman-
tics. It provides a set of entity types (the other name of concepts in the database
vocabulary) but is much simpler and faster than Chein's algorithm(s). However, it
provides different results, closer to what a database developer expects from a
normalized schema. Since it still need to compute the transitive reduction of its
inclusion relation (Section 30.8) to extract the ISA hierarchy, it has been called ISA
recovery.

30.9.1 The basic algorithm
Let us consider the Object/Attribute matrix of Figure 30.7 and pivot it to produce the
equivalent matrix of Figure 30.14.

Figure 30.14 - Another presentation of the matrix of Figure 30.7

Instead of creating a rectangle from each source object, as we did in step S2 of
Section 30.6.2, we create a rectangle from each attribute row of this matrix. These
rectangles associate with each attribute the set of objects in which it appears. This
operation materializes the obj(B) operator described in Section 30.2. Then we
merge the rectangles that share the same set of objects, e.g., those built from Emp and
Nam. By construction, these rectangles are maximal and therefore form a set of
concepts of the source context (Figure 30.15). 

18. See [Hainaut, 2002] for example.

MAN ENG SEC

Emp x x x

Nam x x x

Dep x

Lev x x

Sal x x

Spe x

Lan x



36 Case study 30 • Classifying objects

Printed 4/6/23

(MAN,ENG,SEC)x(Emp,Nam)
(MAN)x(Dep)
(MAN,ENG)x(Lev)
(ENG,SEC)x(Sal)
(ENG)x(Spe)
(SEC)x(Lan)

Figure 30.15 - The concepts extracted from the context of Figure 30.14

We build the concept hierarchy as described in Section 30.4. The result is shown in
Figures 30.16 and 30.17.

(MAN)x(Dep)     subtype of (MAN,ENG)x(Lev)
(ENG)x(Spe)     subtype of (MAN,ENG)x(Lev)
(ENG)x(Spe)     subtype of (ENG,SEC)x(Sal)
(SEC)x(Lan)     subtype of (ENG,SEC)x(Sal)
(MAN,ENG)x(Lev) subtype of (MAN,ENG,SEC)x(Emp,Nam)
(ENG,SEC)x(Sal) subtype of (MAN,ENG,SEC)x(Emp,Nam)

Figure 30.16 - Transitive reduction of the subtype/supertype relation

It is important to note that the procedure associates with each object only its proper
attributes.

Figure 30.17 - The concept hierarchy derived from the context of Figure 30.7

30.9.2 An SQL translation of the ISA recovery algorithm
To implement this technique in SQL, we first define the appropriate data structures
(Script 30.15). 

   

      

SEC 
Lan

MAN,ENG,SEC 
Emp
Nam

MAN 
Dep

MAN,ENG 
Lev

ENG 
Spe

ENG,SEC 
Sal



37

Printed 4/6/23

 

Script 30.15 - ISA recovery: the data structures (column types ignored)

Then, we extract the maximal rectangles in two steps: for each attribute, we compute
the list of its objects (the from subquery in Script 30.16)19, thus building elementary
rectangles, then we merge the AttID parts of those of these rectangles that have the
same G part. These maximal rectangles are stored in the CONCEPT table.

This procedure, particularly simple and intuitive, will be discussed and compared
with the Chein algorithm in a later section.

30.9.3 The case of empty concepts
The basic algorithm may, in certain circumstances, create or discard concepts that
have no proper attributes. We will discuss two different cases.

 

Script 30.16 - Compute the concepts from the maximal rectangles in OBJ_has_ATT

Preserving the source objects with no proper attributes
If we examine in more detail the composition of the matrix of Figure 30.14, we
observe that it assigns each source object (MAN, ENG, SEC) at least one proper
attribute. The consequence is that all these source objects appear in the final set of
concepts and, more explicitly, in the hierarchy of Figure 30.17. Let us suppose that
we remove the attribute Spe, so that the attribute set of ENG is reduced to
(Emp,Nam,Lev,Sal). 

Applying the procedure of Script 30.16, we observe that ENG has disappeared. It
is included in higher level aggregated concepts but no longer exists as a standalone
concept:

(MAN,ENG,SEC)x(Emp,Nam)
(MAN)x(Dep)
(MAN,ENG)x(Lev)
(ENG,SEC)x(Sal)

create table OBJ_has_ATT(ObjID,AttID);
create table CONCEPT(G,M);

19. We have used the extended version of group_concat to ensure that the components of the
object lists are sorted, so that they can be grouped by correctly in the outermost query.

insert into CONCEPT
   select G,group_concat(AttID)
   from (select group_concat2(ObjID,1,ObjID,0,',') as G, AttID
         from   OBJ_has_ATT
         group by AttID)
   group by G;



38 Case study 30 • Classifying objects

Printed 4/6/23

(SEC)x(Lan)

The new concept hierarchy is shown in Figure 30.18.

Figure 30.18 - Devoid of any proper attributes, the source object ENG disappears

Whether or not the disappearance of such source objects is desirable depends on the
objective of the FCA. In the database domain, source objects most often are mean-
ingful data sets, such as tables, object classes, table types or entity types, that are to
be used in application programs. The FCA process consists in normalizing a source
schema by eliciting hidden pertinent data sets without getting rid of the source
objects, considered the very first concepts of the solution.

To preserve these empty concepts, we just add them to the CONCEPT table, as
shown in Script 30.17.

 

Script 30.17 - Extended concept extraction: all the source concepts are preserved

The concept hierarchy now includes these empty concepts (Figures 30.19 and
30.20). It must be noted that the Chein algorithm also discards these source empty
concepts.

insert into CONCEPT
   select G,group_concat(AttID)
   from (select group_concat2(ObjID,1,ObjID,0,',') as G, AttID
         from   OBJ_has_ATT
         group by AttID)
   group by G
     union
   select distinct ObjID,''
   from   OBJ_has_ATT
   where  ObjID not in (select G from CONCEPT);

   

      

SEC 
Lan

MAN,ENG,SEC 
Emp
Nam

MAN,ENG 
Lev

MAN 
Dep

ENG,SEC 
Sal



39

Printed 4/6/23

(MAN,ENG,SEC)x(Emp,Nam)
(MAN,ENG)x(Lev)
(ENG,SEC)x(Sal)
(MAN)x(Dep)
(ENG)x()
(SEC)x(Lan)

Figure 30.19 - Reintroduction of empty source concepts

Figure 30.20 - Empty source concepts can also be represented in the concept 
hierarchy

Empty intermediate concepts
We consider the formal context comprising objects MAN, ENG and SEC, from which
we have built the concept hierarchy of 30.17. Now, we add a new object to this
context, ASSIST, that represents technical assistants, described by four attributes:
Emp, Nam, Lev and Sal. The modified concept hierarchy is shown in Figure 30.21.

This hierarchy exhibits a pattern that we have not yet encountered: two concepts,
ENG and ASSIST, have the same two superconcepts, MAN,ENG,ASSIST and
ENG,ASSIST,SEC. More generally, two or more concepts have at least two direct
superconcepts in common.20

This pattern suggests the existence of an intermediate concept, here ENG,ASSIST,
which depends on the two superconcepts and on which the two subconcepts depend.
In a sense, this new concept tells that ENG and ASSIST have a common character-
istic, that is, to depend on the same set of superconcepts. It materializes the common

20. Or, equivalently, a set of at least two superconcepts share the same set of at least two direct
subconcepts.

   

      

SEC 
Lan

MAN,ENG,SEC 
Emp
Nam

MAN,ENG 
Lev

MAN 
Dep

ENG,SEC 
Sal

ENG 



40 Case study 30 • Classifying objects

Printed 4/6/23

subconcept-superconcept relationship. Naturally, this concept has no proper
attribute. This transformation is illustrated in Figures 30.22 and 30.23.

Figure 30.21 - ENG and ASSIST share the same set of superconcepts

(MAN,ENG,ASSIST,SEC)x(Emp,Nam)
(MAN,ENG,ASSIST)x(Lev)
(ENG,ASSIST,SEC)x(Sal)
(ENG,ASSIST)x()
(MAN)x(Dep)
(ENG)x(Spe)
(ASSIST)x()
(SEC)x(Lan)

Figure 30.22 - Introduction of intermediate concept ENG,ASSIST

It must be noted that the Chein algorithm automatically creates the empty interme-
diate concepts, whenever the pattern condition is met.

Here again, whether this transformation has to be performed depends on the
application domain. In a database schema, where developers tend to avoid too deep
inheritance hierarchies, considered less readable, the solution of Figure 30.21 will
probably be preferred. On the contrary, when extracting the most pertinent concepts
from a large data set, the users might appreciate the elicitation of such concepts as
ENG,ASSIST in Figure 30.23.

   

      

SEC 
Lan

MAN,ENG,ASSIST,SEC 
Emp
Nam

MAN,ENG,ASSIST 
Lev

MAN 
Dep

ENG,ASSIST,SEC 
Sal

ENG 
Spe

ASSIST 



41

Printed 4/6/23

Figure 30.23 - A new empty concept makes explicit the common set of superconcepts 
of ENG and ASSIST

Creating the empty intermediate concepts

Let us suppose that we want to identify and create these intermediate concepts. To
develop such a procedure, we will illustrate its steps by the abstract example of
Figure 30.24, in which all the concepts comprise (at least) an attribute. This hier-
archy has been built by the procedure developed in Section 30.8. 

Figure 30.24 - An abstract hierarchy without empty intermediate concepts

Its fourteen subconcept-superconcept links are initially stored in table
ISA(Sub,Super)21. The content of ISA is shown in Figure 30.25. It is produced by the
query 30.1822:

21. We ignore the column Trans, now useless.

   

      

   

SEC 
Lan

MAN,ENG,ASSIST,SEC 
Emp
Nam

MAN,ENG,ASSIST 
Lev

MAN 
Dep

ENG,ASSIST,SEC 
Sal

ENG,ASSIST 

ENG 
Spe

ASSIST 

               

Z 
z

Y 
y

X 
x

W 
w

V 
v

F 
xf

E 
xe

D 
xd

C 
xc

B 
xb

A 
xa



42 Case study 30 • Classifying objects

Printed 4/6/23

 

Script 30.18 - Showing the content of table ISA

+-----+---------+
| Sub | Supers  |
+-----+---------+
| A   | V       |
| B   | V;W;X   |
| C   | V;W;X;Y |
| D   | X;Y     |
| E   | X;Y;Z   |
| F   | Z       |
+-----+---------+

Figure 30.25 - Synthetic view of table ISA

Now, we select the concepts (column Sub) that depend on at least two superconcepts
(column Super). Concepts A and F are discarded (Script 30.19 and Figure 30.26).

 

Script 30.19 - Selecting the concepts depending on 2+ superconcepts

+-----+---------+
| Sub | Super   |
+-----+---------+
| B   | V;W;X   |
| C   | V;W;X;Y |
| D   | X;Y     |
| E   | X;Y;Z   |
+-----+---------+

Figure 30.26 - The four concepts that depend on 2+ superconcepts (view ISA2)

We compute in ISA2 the intersection of each pair of sets of superconcepts. If this
intersection comprises at least two superconcepts, the subconcepts are concatenated,
otherwise, the pair is dropped (Script 30.20 and Figure 30.27).

22. The choice of the ';' separator preserves the identity of superconcepts when their name is
made up of more than one component. On the contrary, subconcepts are merged (without dupli-
cates), which justify the ',' separator, the same as that used in the concept names.

select Sub,group_concat(Super,';') as Supers
from   ISA
group by Sub;

create view ISA2(Sub,Super) 
as select Sub, group_concat(Super,';')
   from   ISA
   group by Sub
   having count(*) >= 2;



43

Printed 4/6/23

 

Script 30.20 - Merging pairs of concepts that share at least two superconcepts

+------+--------+
| Subs | Supers |
+------+--------+
| B,C  | X;W;V  |
| C,D  | Y;X    |
| C,E  | Y;X    |
| D,E  | Y;X    |
+------+--------+

Figure 30.27 - Pairs of concepts sharing a set of at least two superconcepts (view 
PAIR)

Finally, we merge the sets of subconcepts that share the same set of superconcepts
(Script 30.20 and Figure 30.27). For instance, three concept sets C,D, C,E and D,E
are merged into C,D,E (Figure 30.28). The updated concept hierarchy is shown in
Figure 30.29.

 

Script 30.21 - Final step: merging the set of subconcepts sharing the same set of
superconcepts

+------------+---------------+
| NewConcept | SuperConcepts |
+------------+---------------+
| B,C        | X;W;V         |
| C,D,E      | Y;X           |
+------------+---------------+

Figure 30.28 - The two new intermediate concepts and their superconcepts

These script fragments can be wrapped into a single query. This is left as an exercise.

create view PAIR(Subs,Supers)
as select I1.Sub||','||I2.Sub,
          itemInter(I1.Super,I2.Super,';') as Supers
   from   ISA2 I1,ISA2 I2
   where  I1.Sub < I2.Sub
   and    itemLen(Supers,';') >= 2;

select itemSort(group_concat(Subs,','),0,1,',') as NewConcept,
       Supers as SuperConcepts
from  PAIR
group by Supers;



44 Case study 30 • Classifying objects

Printed 4/6/23

Figure 30.29 - Introducing two intermediate empty concepts

Note
The introduction of intermediate concepts can again create the conditions for the
generation of additional intermediate concepts. It is therefore recommended to
iterate the process until no additional concepts are created.

30.9.4 Python translation of the ISA recovery algorithm 
Due to its simplicity, the SQL script 30.17 is easily translated into a small Python
program like the one shown in Script 30.22. 

  

Script 30.22 - A Python translation of SQL Script 30.17

 def groupConcat(T,A,G):
     UG = list(set([t[G] for t in T]))
     AG = []
     for g in UG:
         ag = ','.join([t[A] for t in T if t[G] == g])
         AG.append((g,ag))
     return AG

 innerQuery  = groupConcat(I,0,1)
 Concepts = groupConcat(innerQuery,0,1)

 actObj = [obj for (obj,att) in Concepts
           if len(obj.split(',')) == 1]
 for obj in G:
     if obj not in actObj:
         Concepts.append((obj,''))

               

      

Z 
z

Y 
y

X 
x

W 
w

V 
v

F 
xf

E 
xe

D 
xd

C,D,E 

C 
xc

B,C 

B 
xb

A 
xa



45

Printed 4/6/23

The component I of the context is represented by an eponymous list of couples, the
first element of which is the name of an object and the second is the name of one of
its attributes. 

The groupConcat function simulates the group_concat-group by SQL
pattern applied to a list of couples. T is this list, A is the index [0,1] of the component
of the couples to aggregate and G is the index [0,1] of the component on which the
aggregation is applied (the grouping criterion). The list UG comprises the unique
values of the G components of the couples. 
The first application of the function corresponds to the inner query of the SQL
expression. It computes the rectangles based on each attributes. So, we aggregate the
objects names (index A = 0) with the same attribute (index G = 1):

innerQuery = groupConcat(I,0,1)

The result, innerQuery, is a list of couples (attribute, object list). The second appli-
cation merges the rectangles with the same object list. It aggregates the attribute
names (index A = 0) with the same object list (index G = 1):

Concepts = groupConcat(innerQuery,0,1)

The result is that of Figure 30.15. The end of the code converts the objects with no
proper attributes into concepts. 

30.10 Experimentation

The algorithms developed in this study have been translated into four SQLfast
scripts. They are included in the SQLfast distribution, along with a collection of
sample formal contexts.

30.10.1 The scripts

Chein algorithm, Python implementation
The script computeFCA (Python).sql opens the control panel shown in Figure 30.30
and through which the user selects a Python procedure and the way the concept hier-
archy is derived (None, through a Python algorithm, through an SQL script). 

The Python procedure described in Section 30.7 is labelled "1. two lists". The
other four procedures are based on alternative representations of the sets R1, R2 and
R. They will be discussed in Section 30.12, devoted to performance optimization. 



46 Case study 30 • Classifying objects

Printed 4/6/23

Figure 30.30 - Control panel of the Python implementation of the Chein algorithm

The script calls the FCA_Engine.py Python module which includes the five variants
of the Chein algorithm and (optionally) the derivation of the concept hierarchy. This
module has been added to the SQLfast directory.

Chein algorithm, SQL implementation
The script computeFCA (SQL).sql opens the control panel shown in Figure 30.31. It
allows the user to specify the information to be displayed at each stage of execution
and the final results. In addition, the user can evaluate the effect of various combina-
tions of indexes on the execution time (more on this in Section 30.12.2).



47

Printed 4/6/23

Figure 30.31 - Control panel of the SQL implementation of the Chein algorithm

ISA recovery algorithm, SQL implementation
The control panel of the script computeISA Recovery (SQL).sql is shown in Figure
30.32. The first frame specifies the additional concepts to include in the solution
(empty source objects and empty intermediate concepts). The second frame controls
the number of rows to be displayed and the maximum number of iterations when
computing the intermediate concepts.

ISA recovery algorithm, Python implementation
The Python script (one of the function of the FCA_Engine.py module) is executed
from the SQLfast script computeISA Recovery (Python).sql.



48 Case study 30 • Classifying objects

Printed 4/6/23

Figure 30.32 - Control panel of the ISA Recovery algorithm

30.10.2 Sample formal contexts
The literature and the tutorials available on the web provide us with many illustra-
tive samples. However they all are quite small, comprising one or two dozen objects
and not more attributes. They are fitted to play with the concepts and to illustrate the
way the algorithms work, but they are less useful to compare the solution, the time
performance and the space requirements of the algorithms. Some of them are
included in the SQLfast distribution. They are available in the directory Scripts/
Case-Studies/Case_FCA/Contexts.

– PERSONNEL

One of the first contexts used in this study.
+--------+---------------------------+
| Object | Attributes                |
+--------+---------------------------+
| ENG    | Emp#,Name,Lev,Gra,Sal,Spe |
| MAN    | Emp#,Name,Lev,Gra,Dep     |
| SEC    | Emp#,Name,Sal,Lang1,Lang2 |
| TRA    | Emp#,Name,Sal,Lang1       |
+--------+---------------------------+

Scripts: Create-PERSONNEL.sql, FCA-PERSONNEL.csv



49

Printed 4/6/23

– ANIMAL

Seven animal species and their properties.23

+-----------+------------------------------+
| Object    | Attributes                   |
+-----------+------------------------------+
| canary    | eggs,feather,fly,breath      |
| crocodile | eggs,teeth,swim,breath       |
| duck      | eggs,feather,fly,swim,breath |
| frog      | eggs,swim,breath             |
| ostrich   | eggs,feather,breath          |
| salmon    | eggs,swim                    |
| shark     | eggs,teeth,swim              |
+-----------+------------------------------+

Scripts: Create-ANIMAL.sql, FCA-ANIMAL.csv

– WATERS

Description of 17 bodies of water24.
+-----------+-----------------+
| Object    | Attributes      |
+-----------+-----------------+
| CANAL     | con,run         |
| CHANNEL   | con,run         |
| LAGOON    | con,mar,nat,sta |
| LAKE      | con,nat,sta     |
| MAAR      | con,nat,sta     |
| POND      | con,nat,sta     |
| POOL      | con,nat,sta     |
| PUDDLE    | nat,sta,tmp     |
| RESERVOIR | con,sta         |
| RIVER     | con,nat,run     |
| RIVULET   | con,nat,run     |
| RUNNEL    | con,nat,run     |
| SEA       | con,mar,nat,sta |
| STREAM    | con,nat,run     |
| TARN      | con,nat,sta     |
| TORRENT   | con,nat,run     |
| TRICKLE   | con,nat,run     |
+-----------+-----------------+

Scripts: Create-WATERS.sql, FCA-WATERS.csv

– ERA

Abstract physical relational schema (just tables and columns) derived from the
flattening of an Entity-relationship conceptual schema. Comprises 25 objects and
52 attributes. Question: can the FCA algorithms recover the exact source concep-
tual schema?

23. Example often used in tutorials. See for example, https://ijcai-15.org/downloads/tutorials/
T23-FCA.pdf
24. See extended description in https://en.wikipedia.org/wiki/Formal_concept_analysis



50 Case study 30 • Classifying objects

Printed 4/6/23

+--------+-----------------------------------------------------+
| Object | Attributes                                          |
+--------+-----------------------------------------------------+
| Q01    | a1,a2,a3,d1,d2,j1,q01                               |
| Q02    | a1,a2,a3,d1,d2,e1,j1,k1,k2,q02                      |
| Q03    | a1,a2,a3,d1,d2,e1,k1,k2,q03                         |
| Q04    | a1,a2,a3,b1,b2,d1,d2,e1,k1,k2,f1,f2,l1,q04          |
| Q05    | a1,a2,a3,b1,b2,e1,f1,f2,l1,q05                      |
| ...    | ...                                                 |
| R06    | a1,a2,a3,b1,b2,c1,c2,f1,f2,g1,g2,h1,h2,h3,m1,m2,r06 |
| R07    | b1,b2,c1,c2,h1,h2,h3,i1,i2,i3,o1,r07                |
| R08    | c1,c2,i1,i2,i3,p1,p2                                |
| R09    | c1,c2,i1,i2,i3,p1,p2,r09                            |
| R10    | c1,c2,i1,i2,i3,p1,p2,r10                            |
+--------+-----------------------------------------------------+

Scripts: Create-ERA.sql, FCA-ERA.csv

– COUNTRY25

The formal context comprises 147 objects (countries) and 33 attributes (country
indicators). Each object describes a country through 11 attributes. From this
source, we have derived subsets of 10 to 147 countries. Below, the context of
COUNTRY-10 (country names and attributes names are denoted by letters or
numbers)

+--------+-------------------------------+
| Object | Attributes                    |
+--------+-------------------------------+
| A      | 2,5,6,9,12,14,19,22,23,29,32  |
| B      | 0,3,7,10,11,16,18,20,25,28,30 |
| C      | 2,4,7,9,13,15,18,21,26,28,31  |
| D      | 2,4,6,9,12,14,19,22,23,29,32  |
| E      | 1,4,7,9,12,15,17,20,26,27,31  |
| F      | 1,3,7,9,11,16,18,20,26,27,30  |
| G      | 2,5,7,9,13,16,17,20,26,27,32  |
| H      | 0,3,7,9,13,16,17,20,26,27,30  |
| I      | 1,5,7,10,12,14,18,21,25,27,32 |
| J      | 2,4,6,9,12,15,18,20,25,27,31  |
+--------+-------------------------------+

Scripts: Create-COUNTRY-10.sql (10 countries) to Create-COUNTRY-Full.sql (147
countries, FCA-COUNTRY-10.csv to FCA-COUNTRY-100.csv.

– Hypercard
This example is a reduced version of a real project the objective of which was to
convert the data of a small Hypercard26 application into a standard database. The

25. Derived from the data provided in https://github.com/mdaquin/fca.js, referenced by
[D’Aquin, 2020]. The full source data are available in script Create-COUNTRY-Full.sql. Coun-
tries are coded as numbers from 0 to 146 (except in COUNTRY-10, where they are coded as
letters) and attributes from 0 to 32. The interpretation of these codes can be found as comments in
the full script.



51

Printed 4/6/23

very first step when converting a database is to extract its conceptual schema, in
the form of a hierarchy of entity types. The application comprises eight files, the
structure of which can be expressed as the following formal context:

+--------+----------------------------------------+
| Object | Attributes                             |
+--------+----------------------------------------+
| BOO    | Aut,Dat,ID,Key,Mon,Pub,Tit,Yea         |
| COL    | Dat,Edi,ID,Key,Mon,Pub,Tit,Yea         |
| COLP   | Aut,Dat,ID,Key,Pag,Sou,Tit             |
| JOU    | Dat,Edi,ID,Key,Mon,Num,Tit,Vol,Yea     |
| JOUP   | Aut,Dat,ID,Key,Pag,Sou,Tit             |
| PRO    | CDa,CTi,Dat,Edi,ID,Key,Mon,Pub,Tit,Yea |
| PROP   | Aut,Dat,ID,Key,Pag,Sou,Tit             |
| REP    | Aut,Dat,ID,Key,Mon,Ori,Tit,Typ,Yea     |
+--------+----------------------------------------+

The meaning of these abbreviations is described in the SQL code of the context.

Scripts: Create-HYPERCARD.sql, FCA-HYPERCARD.csv

30.10.3 The context generator
The context generator (Context-Generator.sql) is a small application that generates
synthetic (i.e., artificial) formal contexts of up to 2,600 objects27. The attributes of
each object are randomly selected among a set of attributes of up to the same size.
The size of the attribute set of each object is a random number in a definite range. 

The dialog box of Figure 30.33 sets the parameters for a formal context of 100
objects and 30 attributes. A set of 2 to 10 attributes will be associated with each
object. The size and content of the attribute set of each object are randomly selected.

The description of the context is stored as an SQL script or as a csv file.
Due to the twofold random nature of the I relation, the contexts generated from

the same set of parameters can vary, producing, for example, a different number of
concepts.

30.11 Evaluation of the FCA implementations

In this section, we will comment and compare the four implementations developed
here above on the basis of qualitative and quantitative criteria:

26. Hypercard is a user-friendly software tool ("programming for the rest of us") that was very
popular on the Macintosh in the 80’s and beyond. Very powerful and remarkably simple, it
allowed to build small interactive database applications in an intuitive way. [https://en.wiki-
pedia.org/wiki/HyperCard]
27. The script includes a parameter to set the maximum to 26,000 or 260,000.



52 Case study 30 • Classifying objects

Printed 4/6/23

Figure 30.33 - Creating a new formal context

• Python implementation of the Chein algorithm

• SQL implementation of the Chein algorithm

• SQL implementation of the ISA recovery algorithm

• Python implementation of the ISA recovery algorithm

It should be clear that different input data sets may produce different results, at least
for some metrics28. It would therefore be imprudent to generalize the conclusions of
this section to all possible uses of the techniques studied. As usual, the reasoning is
more important than the conclusions!

30.11.1 Simplicity of algorithms
Of the four FCA implementations, the SQL version of the ISA recovery algorithm
(Script 30.17), expressed as a single intuitive query, is arguably the simplest and
most natural, though some Python programmers may consider its Python translation
to be equally so. The comparison between the Python and the SQL implementation
of the Chein algorithm is a matter of taste: the Python code is shorter but the SQL

28. For example, the simplicity and source object preservation criteria do not depend on the
nature of the formal context.



53

Printed 4/6/23

version which performs global and declarative set-oriented operations, may be
considered more natural by some.

The comparison can change considerably when we look at optimized versions of
the algorithms (see Section 30.12). The main technique for optimizing SQL queries
does not change the queries themselves but merely adds indexes, which are external
constructs that do not require table modification either. So there is no difference
between the tables and the queries whether the algorithm is optimized or not. The
optimized SQL solution therefore preserves its original simplicity. In contrast, opti-
mizing a procedural program often requires changes to the data structures and
algorithmic control structures such that the optimized version can be considered
more convoluted and less readable. 

30.11.2 Preservation of the source concepts
The Chein algorithm may ignore some source objects for two reasons. First, it
merges the source objects with the same attribute set (step S2). Then, it discards the
rectangles of R1 that have the same attribute set as some rectangles in R2 (step S5).

On the contrary, the ISA recovery algorithm preserves all the source objects by
converting them into concepts, even those that have no proper attributes.

30.11.3 Nature of the attributes of the concepts
The Chein algorithm associates with each concept all its attributes, be they proper or
inherited. On the contrary, the ISA recovery algorithm keeps their proper attributes
only. When there is none, empty concepts are generated. As we have observed, they
all translate source objects of the context. Unless the complementary procedure of
Section 30.9.3 have been applied, each generated concept has at least one proper
attribute.

Each form can be converted into the other one, either by recursively propagating
the attributes of each concept to its subconcepts or by recursively deleting in each
concept the attributes of its super-concepts. This is left as an exercise.

30.11.4 Creation of empty intermediate concepts
The Chein algorithm, through the merging step of R1 rectangles, creates new rectan-
gles, then converts those that are maximal into concepts. Among them many inter-
mediate concepts have no proper attributes.

The first step of the ISA recovery algorithm creates concepts that have proper
attributes. The second step adds the concepts derived from the source objects that
have no proper attributes and therefore appear empty. No empty intermediate
concepts are generated. However, the complementary procedure described in
Section 30.9.3 generates some empty intermediate concepts that may contribute to
the readability of the final hierarchy (compare the schemas of Figures 30.24 and
30.29).



54 Case study 30 • Classifying objects

Printed 4/6/23

The table of Figure 30.34 shows that the number of empty intermediate concepts
may be quite huge. For example, the ISA recovery solution of the COUTRY-50 case
(labelled ISA recovery) includes 82 concepts compared to 1,639 for the Chein algo-
rithm, most of them being empty intermediate concepts. Clearly, the ISA recovery
algorithm generates less concepts than the Chein algorithm. 

Figure 30.34 - Number of concepts generated by the algorithms. The additional empty 
intermediate concepts of the ISA recovery algorithm have not been accounted for

The figure 30.35 illustrates the same fragment of the hierarchy built from the
concepts generated by both techniques. 

It should be noted that each of these algorithms may generate intermediate
concepts that the other does not. For example, the ISA recovery algorithm (through
its complementary procedure), applied to the COUNTRY-10 context, generates 4
new empty intermediate concepts29 but two of them are ignored by the Chein
algorithm30.

In a context of database reverse engineering, in which the physical schema of a
legacy database comprises 50 tables or data files, generating a conceptual schema
made up of more than 1,600 entity types has no sense31.

In contrast, the ISA recovery algorithm is not suitable for discovering, analyzing
and querying semantically (potentially) relevant object classes among large sets of
objects.

This discussion clearly delineates the application domains of these algorithms.

30.11.5 Memory space requirements
We examine the quantity of memory space the implementation of each algorithm
requires at runtime. The measurements are performed on the COUNTRY-50 context
resolution.

Objects Chein algorithm ISA recovery
COUNTRY-10 10 68 36

COUNTRY-20 20 299 50

COUNTRY-30 30 708 60

COUNTRY-40 40 1,187 72

COUNTRY-50 50 1,639 82

COUNTRY-60 60 2,171 92

29. CG, GH, BCI and EGHJ
30. BCI and EGHJ
31. All the more so as each concept will be, in a second phase of the database reengineering
process, translated into a table! 



55

Printed 4/6/23

Figure 30.35 - Fragments of the COUNTRY-10 concept hierarchy generated by the 
standard Chein algorithm (left) and the ISA recovery algorithm (right)

Python implementation of the Chein algorithm
The space used by the Python solver is determined by the maximum size of the lists
that implement the rectangle sets R1, R2 and R. These numbers are given in the table
of Figure 30.36 at the end of each of the ten levels of the CONTRY-50 context
processing. They are obtained by enabling the tracing function (see control panel of
Figure 30.30). The Python solver requires 1,305 + 1,305 + 1,639 = 4,249 list
elements. 

Figure 30.36 - Maximum number of elements in lists R1, R2 and R. The row Disc R1 
indicates the number of discarded elements in R1.

1 2 3 4 5 6 7 8 9 10
R1 50 856 1,305 955 652 407 232 119 48 10

R2 856 1,305 955 652 407 232 119 48 10 0

Disc R1 0 573 954 652 407 232 119 48 10 0

R 50 333 684 987 1,232 1,407 1,520 1,591 1,629 1,639

   

         

         

   

IG DA

A,C,D,E,F,G,H,J 
9

A,D,E,I,J 
12

A,C,D,G,J 
2

A,D,G,I 
32

A,G,I 
5

A,D,J 
6

A,D,I 
14

A,D 
19
22
23
29

   

   

      

   
   

      

         

   

IG

A,D,E,J 

A,D,G 

A,I A,G 

DA

A,C,D,E,F,G,H,J 
9

A,D,E,I,J 
12

A,C,D,G,J 
2

A,D,G,I 
32

A,G,I 
5

A,D,J 
6

A,D,I 
14

A,D 
19
22
23
29



56 Case study 30 • Classifying objects

Printed 4/6/23

SQL implementation of the Chein algorithm 
The algorithm uses three physical tables, namely R1, R2 and R, R3 being another
name for R1 at the next level. The maximum size of these tables are obtained by
checking the button Size of the control panel of Figure 30.31. The figures shows that
the sizes are those of the Python solver, considering that table R3 plays the role of
list R2 (Figure 30.37). 

Figure 30.37 - Number of rows of the working tables at each level (COUNTRY-50)

The interesting result is that of table R2, which contains the rectangles created by
merging the couples of R1 rectangles that match. Created by a self-join of R1 in Step
S3, the space complexity of R2 is O(|R1|2). Indeed, the first levels show an important
increase of the size of R2.

The execution will consume 1,305 + 455,423 + 1,305 + 1,639 = 459,672 table
rows. Though the evaluation and the comparison of these figures are approximate,
there is little risk to conclude that the space requirement of the SQL implementation
is about one hundred times that of the Python implementation.

The tables of the SQL implementations (as well as that of the next algorithm) are
created in an in-memory database so that all the three algorithms execute in RAM,
which make their comparison more pertinent.

SQL implementation of the ISA recovery algorithm
Expressed as the query of Section 30.17, the implementation does not use any inter-
mediate data structure. The translation of OBJ_has_ATT to CONCEPT is performed
in a single step. However, the execution of a group-by query usually includes
sorting the source table, which itself relies on its own temporary data structures,
such as extracts of the table to sort and indexes. Though precisely evaluating their
size would need an in-depth knowledge of the internals of the RDBMS, we can try
to estimate conservative figures for the COUNTRY-50 context.

 The internal group-by subquery processes the table OBJ_has_ATT that contains
510 rows. Sorting them requires the storage of a bit more than 510 additional tempo-
rary rows. The subquery cannot produces more than 82 rows (32 distinct attributes +
50 objects if none of them include any proper attributes). The external group-by
query will sort and aggregate these 82 rows. 

These sizes can be considered negligible.

1 2 3 4 5 6 7 8 9 10
R1 50 856 1,305 955 652 407 232 119 48 10

R2 1,211 254,767 455,423 220,484 90,535 31,047 8,967 1,918 162 10

R3 856 1,305 955 652 407 232 119 48 10 0

Disc R1 0 573 954 652 407 232 119 48 10 0

R 50 333 684 987 1,232 1,407 1,520 1,591 1,629 1,639



57

Printed 4/6/23

Python implementation of the ISA recovery algorithm

A similar analysis will also conclude that the memory space used by the Python code
is negligible.

30.11.6 Runtimes
The execution time is a critical evaluation criterion. From it, we can derive guide-
lines for the applicability of each technique depending on the size of datasets. We
have measured the runtime of each implementation when processing the COUTRY-
10 to COUTRY-60 formal contexts. These implementations do not yet include the
optimization techniques we will discuss later.

The table 30.38 shows particularly dramatic results:
– When running the Chein algorithm, the Python version turns out to be much faster

than the SQL variant. The ratio between these times seems to rapidly increase
with the size of G, the set of source objects. All other parameters being equal, it
appears that their complexity of the algorithm is O(|G|3), which leaves little hope
for improvement32.

– The figures relative to the ISA recovery algorithm (both Python and SQL imple-
mentations) just mean that it computes the concepts in less than 1 millisecond. It
must be kept in mind, however, that this algorithm generates a different set of
concepts than the Chein algorithm.

– The building of the concept hierarchy is much faster when executed by the SQL
query than by the Python procedure. Python could do better: optimization desper-
ately needed!

Figure 30.38 - Execution times of the implementations of the FCA algorithms and of 
the derivation of the concept hierarchy

32. See [Sarmah et al., 2013]. Also observed experimentally by a regression on the series of time
values. It should be noted that the Chein algorithm, though some other algorithms have better
execution times, is far from the slowest [Kuznetsov, 2001].

Chein algorithm ISA recovery Hierarchy
Python SQL Python SQL Python SQL

COUNTRY-10 0.02 0.07 0.00 0.00 0.13 0.03

COUNTRY-20 0.40 1.95 0.00 0.00 34.70 0.81

COUNTRY-30 3.22 15.03 0.00 0.00 702.34 6.74

COUNTRY-40 14.65 83.22 0.00 0.00 5,771.82 23.57

COUNTRY-50 45.00 359.06 0.00 0.00 54.75

COUNTRY-60 128.53 1,322.97 0.00 0.00 115.96



58 Case study 30 • Classifying objects

Printed 4/6/23

It may be interesting to examine in more detail the SQL implementation of the Chein
algorithm to identify the most expensive steps. The table in Figure 30.39 details the
execution times for each step of each level when solving the COUTRY-50 context33.
It clearly shows that the step S4, which merges the rectangles of R2, is the main
culprit. This is in line with the sizes of the working tables.

  

Figure 30.39 - SQL implementation of the Chein algorithm: execution time of each 
step of each level in seconds (solving COUNTRY-50),

30.11.7 Other techniques
Besides the Chein algorithm, the literature describes and analyzes more than a dozen
FCA techniques that exhibit different performance characteristics. Although
describing and comparing them would go far beyond the scope of this case study, it
may be interesting to try to classify them according to different criteria. Here are
three of them, which make sense after having studied the internals of the Chein algo-
rithm.
– Batch or incremental. Batch techniques process the formal context as a whole

while the incremental techniques consider each object, one at a time, integrating it
to the solution built so far. The latter facilitates the evolution of the set of objects.
The Chein algorithm belongs to the batch category.

– Bottom-up or top-down. The bottom-up algorithms start from the set of objects of
the context as a first draft of the solution, then layer by layer, reduce the set of
concepts to the maximal rectangles. The final solution is obtained when the last
layer cannot generate new concepts. A top-down technique is an iterative proce-
dure the starting point of which is a root concept comprising the set of all the
objects of the context and all their common attributes (this latter set being often
empty). Then new, more specific concepts are derived from the current state of
the solution until no new concepts can be generated. The Chein algorithm belongs
to the bottom-up category.

– Concept set or concept hierarchy. The final solution of some algorithms is a
complete concept hierarchy, which comprises the set of concepts and their hierar-

33. The execution times of S1, S2 and Level 10 being less than 1 ms. are not shown.

1 2 3 4 5 6 7 8 9 Σ %
S3 0.04 10.51 22.83 11.50 5.40 1.99 0.62 0.16 0.03 53.08 14.78
S4 0.02 42.36 194.65 57.25 9.01 1.30 0.15 0.02 0.00 304.76 84.88
S5 0.00 0.28 0.53 0.23 0.09 0.03 0.02 0.00 0.00 1.18 0.33
S6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S7 0.00 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.04 0.01

Σ 0.06 53.15 218.02 69.00 14.51 3.32 0.79 0.18 0.03 359.06 100



59

Printed 4/6/23

chical organization. Other algorithms generates only the set of concepts, which is
the case of the Chein algorithm. For them, the hierarchy is built by an independent
procedure.

30.12 Improving the performance of the algorithms

The development of high performance implementations is not the main objective of
this case study. Rather, it focuses, as do all the other studies in this series, on the
modeling of the problem and of its solution(s) and on the simplicity of their imple-
mentation. Nevertheless, in some problems, the efficiency of the solution can be of
crucial importance and is therefore an important part of the solving process. This is
clearly the case for the FCA techniques we have designed in this chapter, some of
which have impressive and, to put it bluntly, discouraging execution times.

30.12.1 Chein algorithm (Python implementation)
In the first implementation, the sets of rectangles R1 and R2 are represented by lists
of tuples (g,m,d) where g is the object string-list, m the attribute string-list and d the
discard indicator (Section 30.7). We ignore the representation of R (a list of couples
(g,m)), common to all the techniques we will examine. We symbolize this implemen-
tation of R1 and R2 as follows:

• R1[(g,m,d)] 
• R2[(g,m,d)]

The solving of contexts COUNTRY-10 to COUNTRY-60 shows much better execution
times than the SQL implementation. Let us try to see whether we can gain even
better results by experimenting with other implementations of sets R1 and R2. We
will look at four alternative techniques.

– 2 dictionaries. R1 and R2 are each expressed as a dictionary, symbolically
denoted by R1{g:(m,d)} and R2{g:(m,d)}. A dictionary provides a quick
access to an item based on the value of the key (g). In addition, it can be parsed as
a list in the two embedded loops through the list function: list(R1). 

– 3 dictionaries + 2 lists. In the preceding technique, the parsing of dictionary
R1{g:(m,d)} is likely to be costly, due to its conversion into a list. We propose
to complement it with a simple list R1G[g] of the g values to drive both loops.
The extraction of the m value of g is then done through the dictionary, a very fast
operation. The manipulation of R2 is a bit more complex. First, we need to main-
tain a dictionary R2{g:(m,d)} and a list R2G[g] since, at the end of each level,
R2 becomes the new R1. Then, when searching R2 for pairs of rectangles sharing
the same m part, we need a quick access to R2 through this m part, hence the addi-
tional dictionary R2m{m:g}. To sum up, the implementation comprises three
dictionaries and two lists:



60 Case study 30 • Classifying objects

Printed 4/6/23

• R1{g:(m,d)}, R1G[g] 
• R2{g:(m,d)}, R2m{m:g}, R2G[g]

– 5 lists. The 2-list implementation developed in Section 30.7 and recalled here
before is simple and elegant, but does not support well the key-based access g
where m and m where g since these queries must be performed by list parsing
coded in Python. The idea is to let the Python engine execute them through the
index method, likely to be faster than the equivalent Python loop. For instance,
considering the list L and v, one on its element, the expression L.index(v)
returns the position of the first instance of v in L. So, we decompose the list R1
into three synchronized elementary lists and R2 into two synchronized lists, total-
ling five lists as shown below:
• R1G[g], R1M[m], R1D[d] 
• R2G[g], R2M[m] 

– 2 lists of sets. In the preceding techniques, we translated the sets of object names
and of attribute names into string-lists (as discussed in Section 30.6.1). Now, we
express these sets as Python sets of names. This could improve the union and inter-
section set operations. The sets of rectangles R1 and R2 are implemented as lists
of tuples, each of them comprising a (Python) set of object names, a (Python) set
of attribute names and the d indicator:
• R1[(set{g},set{m},d)] 
• R2[(set{g},set{m},d)] 

The experimental figures obtained when solving the contexts COUNTRY-10 to
COUNTRY-100 are quite interesting (Figure 30.40). 

The 2 dictionaries technique (noted 2 dics) is the most expensive and should be
discarded.

The 5 lists technique clearly appears to be the best, showing an improvement by a
factor of 2.5 to 3.35 (measured for the COUNTRY-100 context, 2 dics technique
excluded).

The other three techniques, namely 2 lists, 3 dics + 2 lists and sets show inter-
mediate figures, the initial 2 lists technique being the more expensive, though not
by far.

2 lists 2 dics 3 dics + 2 lists 5 lists sets
COUNTRY-10 0.02 0.02 0.01 0.01 0.00

COUNTRY-20 0.33 0.53 0.29 0.18 0.16

COUNTRY-30 2.54 6.48 2.59 1.50 1.34

COUNTRY-40 9.27 33.72 7.64 4.42 5.38

COUNTRY-50 24.12 104.96 20.56 11.10 12.35

COUNTRY-60 54.24 276.40 45.26 22.90 35.17



61

Printed 4/6/23

Figure 30.40 -  Execution times (in seconds) of the five Python techniques

The graph of Figure 30.41 shows the relative position of the execution times of the
five techniques.

Figure 30.41 - Comparison of the execution times of the five Python techniques

30.12.2 Chein algorithm (SQL implementation)
The main optimization technique of relational databases is the creation of indexes.
However, just as "man proposes, God disposes", the database designer proposes, the
RDBMS disposes. In other words, the designer creates indexes that should logically
improve the execution time of a query but in some circumstances, the SQL engine
ignores the suggestion and chooses another way (hopefully better) to execute the
query. This fact must be kept in mind in the following.

To try to reduce the execution time of the SQL implementation of the Chein algo-
rithm, we analyze the structure of the queries developed in Section 30.6.2 to identify
potential support indexes.34 

COUNTRY-70 121.28 751.88 97.70 46.19 80.17

COUNTRY-80 206.80 1,366.38 158.45 71.79 153.71

COUNTRY-90 481.51 3,094.88 297.64 125.13 294.77

COUNTRY-100 592.18 442.15 176.83 451.48

34. Steps S1, S2 and S7, which each cost less than 1 ms., are ignored.

0

500

1.000

1.500

2.000

2.500

3.000

3.500

0 10 20 30 40 50 60 70 80 90 100

2 lists

2 dics

3 dics + 2 lists

5 lists

sets

0

500

1.000

1.500

2.000

2.500

3.000

3.500

0 10 20 30 40 50 60 70 80 90 100

2 lists

2 dics

3 dics + 2 lists

5 lists

sets



62 Case study 30 • Classifying objects

Printed 4/6/23

• Step S3, Query 30.4: the query is a self-join of table R1 based on the ordering
criterion "rec1.G < rec2.G". 
Suggestion: index on R1(G)

• Step S4, Query 30.5: the query creates groups on column M of R2. Table R3 is
filled sequentially, which does not require any index.
Suggestion: index on R2(M)

• Step S5, Query 30.6: the query selects the rows of R1 that meet an equality condi-
tion on their (G,M) values. The couples of the right member of the condition are
produced by an unconditional full scan of R2, which requires no index. Another
way to spare access to R1 would be to store not only the G parts of the source rect-
angles but also their M parts, so that the equality checking can be performed in
situ without additional access to R1. Better, since R3 is much smaller than R2,
(Figure 30.37), the step S5 could be performed from the content of R3 instead of
that from R2. However, the test described in Figure 30.39 shows that the contribu-
tion of step S5 to the total cost is very small, suggesting that any further optimiza-
tion is worthless.
Suggestion: index on R1(G,M)

• Step S6, Query 30.7: the query selects rows from R1 based on a binary column
(Disc). The experiment reported in Figure 30.37 shows that the rows non
discarded in R1 account for about 40% of the table. In this condition, an index on
Disc would be useless and ignored by the SQL engine. Table R is sequentially
filled, which does not require any index.
Suggestion: none

To sum up, we retain these three hypotheses:

• on table R1,
– an index on column G

– a combined index on columns G and M

• on table R2,

– an index on column M

To evaluate these suggestions, we apply them to the solving of contexts COUNTRY-
20 to COUNTRY-60. We observe that index R2(M) brings no improvement and is
discarded. On the contrary, indexes R1(G) and R1(G,M) have a positive effect that is
represented in the graph of Figure 30.42. The x-axis specifies the number of source
objects (20 for COUNTRY-20, 30 for COUNTRY-30, etc.) and the y-axis represents
the ratio between the execution time with index and the time without index. For
example, the black curve at x = 30 (COUNTRY-30) indicates that the execution time
with index R1(G) is 80% (more precisely 79.6) of the time without index while the
time with index R1(G,M) (the magenta curve) is slightly better (78.3%). 



63

Printed 4/6/23

Figure 30.42 - Execution time improvement due to appropriate indexes

What does these curves tell us?
– whatever the size of the context, the improvement is not particularly impres-

sive: from 74% to a meager 93%

– the efficiency of both indexes decreases with the size of the context
– the advantage of index R1(G,M) on R1(G) also decreases with the size of the

context

To sum up, these indexes slightly improve the execution time of the SQL implemen-
tation of the Chein algorithm. However, their real usefulness is questionable, to say
the least.

Note
The execution time of this SQL implementation and the influence of indexes are
highly dependent on the structure (|G|, |M|, |I|) and content (G, M, I) of the
source context. This can be shown by solving various configurations created by
the Context generator (Context-generator.sql)

30.12.3 Implementation of the ISA recovery algorithm
The very low times measured for both the SQL and Python implementations do not
suggest any specific optimization, at least for the type and size of contexts consid-
ered in this study. It would be interesting to check these times when processing
larger contexts (several thousands of objects), for instance those generated by the
context generator (Context-Generator.sql). This is left as an exercise.

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

20 30 40 50 60

R1(G)

R1(G,M)

ISA(Sub)

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

20 30 40 50 60

R1(G)

R1(G,M)

ISA(Sub)



64 Case study 30 • Classifying objects

Printed 4/6/23

30.12.4 Building of the concept hierarchy (SQL implementation)
We limit the discussion to the role of indexes on table ISA. The process executes two
queries that create, then update, the table ISA. 

The first one creates and stores in ISA the transitive closure of the inclusion rela-
tion on column G of table R (Script 30.12). It is a self-join, the join condition of
which is based on a UDF (itemInclude(sup.G,sub.G,',')). As they are
implemented in SQLfast, the UDF are blind to any index35.

The second query computes the transitive reduction by deleting the transitive
couples from ISA (Script 30.13). The conditions of the double self-join of the
subquery includes explicit references to columns Sub and Super of table ISA, which
suggests that an index on one (or on both) of these column may improve the execu-
tion time of the query. This hypothesis proves right, as the green curve of Figure
30.42 shows it:

– an index on ISA(Sub) contributes significantly to the reduction of the execution
time; same for an index on ISA(Super) and ISA(Sub,Super)

– the index on ISA(Sub) proves better than those on ISA(Super) and on
ISA(Sub,Super)

– the improvement is all the more important as the size of the ISA increases
(times fall from 52% on COUNTRY-20 to 18% on COUNTRY-60)

Conclusion: create an index on ISA(Sub) before running the second query36.

30.12.5 Building of the concept hierarchy (Python implementa-
tion)

The table in Figure 30.38 shows such a difference between the SQL and Python
implementations that the latter seems irretrievably disqualified for a real usage. 

First, it appears that the first part of the procedure (computing rawInclusion, the
transitive closure of the hierarchy) is by far faster than the second (computing the
transitive reduction, i.e., the final hierarchy). Thus, if an optimization is possible, it
should be sought in this second part.

Let us recall its principle: we examine each couple of concepts (con1,con2) of the
closure, for which we try to find an intermediate concept con3, different from con1
and con2, such that both (con1,con3) and (con3,con2) belong to the closure. If we
find such a concept, then the initial couple is transitive and must be rejected, other-
wise, it belongs to the reduced hierarchy.

The high cost of the algorithm seems to come from the way con3 is selected: we
examine all the concepts (but con1 and con2, which can be neglected). Let us reduce
the source of con3 to the set of superconcepts of con1. Some experiments in solving

35. In the SQL slang, such a query is called non-sargable, that is, non-optimizable [https://stack-
overflow.com/questions/799584/what-makes-a-sql-statement-sargable]
36. Why not before the first query?



65

Printed 4/6/23

the COUNTRY family contexts show that, on the average, each concept has from
2.25 to 4 superconcepts, which is a substantial reduction in size! The code of Script
30.23 translates this idea.

 

Script 30.23 - Improved procedure of transitive reduction of concept hierarchy:
reducing the search space

The decrease of the execution times is also dramatic, as shown in the table of Figure
30.43. The figures of column Python 1 are those of the initial algorithm (copied from
Figure 30.38). Those of column Python 2 are obtained by the new algorithm. The last
two columns show that the SQL script still remains the best technique, specially
when supported by index ISA(Sub) (column SQL 2).

Figure 30.43 - Dramatic effect of simple optimizations of the concept hierarchy 
building (times in seconds)

30.13 On the representation of concept hierarchies

Preliminary remark
The term Galois lattice often appears as a synonym for concept hierarchy. In fact,
Galois lattices are a mathematical domain at the origin of FCA. The lattice struc-
tures a set of elements among which a partial order holds. A concept hierarchy is
a Galois lattice if it satisfies two properties: any pair of concepts have a unique
closest (lowest) common superconcept and a unique closest (highest) common

hierarchy = []
for (con1,con2) in rawInclusion:
    status = 'basic'
    for con3 in [con for (con0,con) in rawInclusion
                 if con0 == con1 and con <> con2]:
        if (con3,con2) in rawInclusion:
            status = 'transitive'
            break
    if status == 'basic':
        hierarchy.append((con1,con2))

Python 1 Python 2 SQL 1 SQL 2
COUNTRY-10 0.13 0.02 0.03 0.04

COUNTRY-20 34.70 2.07 0.81 0.44

COUNTRY-30 702.34 19.73 6.74 2.16

COUNTRY-40 5,771.82 80.62 23.57 5.98

COUNTRY-50 208.99 54.75 11.60

COUNTRY-60 452.93 115.96 20.80



66 Case study 30 • Classifying objects

Printed 4/6/23

subconcept. In particular, this implies that the hierarchy has a unique root concept
and a unique leaf concept. If the hierarchy has several roots, an artificial common
superconcept is added, the G part of which comprises all the objects names and
the M part is empty. If the hierarchy comprises several leaf concepts, an artificial
common subconcept is added, the G part of which is empty and the M part
comprises all the attribute names. The various developments of this study show
that not all concept hierarchies are genuine Galois lattices.

Throughout this study, we constructed various forms of equivalent hierarchy repre-
sentations, in which the G part has been replaced by meaningful names, in which
only proper attributes were shown, or in which all source objects have been
converted into concepts. In this section, we collect all these forms (and some others)
and we show how each of them derives from the others. We illustrate the discussion
on the example of the ANIMAL context37, recalled below (see Section 30.10.2):

+-----------+------------------------------+
| Object    | Attributes                   |
+-----------+------------------------------+
| CANARY    | eggs,feather,fly,breath      |
| CROCODILE | eggs,teeth,swim,breath       |
| DUCK      | eggs,feather,fly,swim,breath |
| FROG      | eggs,swim,breath             |
| OSTRICH   | eggs,feather,breath          |
| SALMON    | eggs,swim                    |
| SHARK     | eggs,teeth,swim              |
+-----------+------------------------------+

... and which can be represented graphically as in Figure 30.44.

Figure 30.44 - Graphical representation of a formal context

By application of the standard Chein algorithm, we obtain the concept hierarchy of
Figure 30.45, graphically rendered in Figure 30.46. 

(CROCODILE)x(breath,eggs,swim,teeth)

(DUCK)x(breath,eggs,feather,fly,swim)

(CANARY,DUCK)x(breath,eggs,feather,fly)

(CROCODILE,SHARK)x(eggs,swim,teeth)

37. Just note that these graphical representations are useful to reason on small contexts and
concept hierarchies!

SALMON 
eggs
swim

FROG 
eggs
breath
swim

OSTRICH 
eggs
feather
breath

SHARK 
eggs
teeth
swim

DUCK 
eggs
feather 
fly
breath
swim

CROCODILE 
eggs
breath
teeth
swim

CANARY 
eggs
feather
fly
breath



67

Printed 4/6/23

(CANARY,DUCK,OSTRICH)x(breath,eggs,feather)

(CROCODILE,DUCK,FROG)x(breath,eggs,swim)

(CANARY,CROCODILE,DUCK,FROG,OSTRICH)x(breath,eggs)

(CROCODILE,DUCK,FROG,SALMON,SHARK)x(eggs,swim)

(CANARY,CROCODILE,DUCK,FROG,OSTRICH,SALMON,SHARK)x(eggs)

Figure 30.45 - "GxM" representation of an FCA solution

If we feel uncomfortable with a schema in which some source object are missing, we
can add them as shown in Figure 30.47 (in blue).

Since the subconcept/superconcept relation was derived from the composition of
their G part (or, equivalently of their M part), the hierarchy is a redundant structure. 

Figure 30.46 - Graphical representation of a concept hierarchy (empty source object 
omitted, all the attributes shown)

The reduction of the M part of the concepts to their proper attributes is shown in
Figure 30.48. Again, the hierarchical structure is derivable and therefore redundant.

In some applications, such as in knowledge engineering, the nature of each
concept in the real-world is important, which requires that it be given a meaningful

      

   

   

      

   

CROCODILE ,DUCK ,FROG 
eggs
breath
swim

CR OCODILE ,SH ARK  
e ggs
t eeth
s wim

CA NARY ,DUCK  
eggs
feath er
fly
bre ath

CANA RY,DUCK,OS TRICH 
eggs
feather
breath

CA NARY ,C ROCODILE ,DUCK ,FROG, OSTRICH 
eggs
breat h

CR OCODILE ,DU CK,F ROG, SALM ON,S HA RK 
egg s
swim

CANA RY,CROCODILE ,DUCK,FROG,OSTRICH,S ALM ON,SHA RK   
eggs

DUCK
eggs
feather 
fly
breat h
swim

CROCODILE  
eggs
breath
teeth
swim



68 Case study 30 • Classifying objects

Printed 4/6/23

name. This is what we have tried to do in the schema of Figure 30.49. The hierarchy
then takes the form of a taxonomy (or ontology) of a part of the real world. Since the
syntactic inclusion relation between the G part of the concepts is gone, the subcon-
cept/superconcept relation must be explicitly stated.

 

Figure 30.47 - Graphical representation of a concept hierarchy (empty source objects 
shown as concept)

The recovery of a complete hierarchy such as that of Figure 30.47 from the reduced
version of Figure 30.48 is performed by the inheritance mechanism. Since the latter
proceeds from the top of the hierarchy downward, we can call it descending inherit-
ance.

Now, let us look closely at the hierarchy of Figure 30.48. We observe that the
name of a subconcept (its G part) is included in the name of its superconcepts. If we
remove the subconcept name from the name of its superconcept, we do not loose
any information. In a sense, the superconcept inherits the names of its subconcepts,
a mechanism that can be called ascending inheritance.

      

   

   

      

   

S A LM ON 
eggs
s wim

CROCO DILE ,DUCK ,FROG  
eggs
breath
s wim

CR O CO DILE ,S H ARK  
e ggs
t eeth
s wim

CA NA RY ,DUCK  
eggs
feath er
fly
bre ath

CA NA RY ,DUCK ,OS TRICH 
eggs
feather
breath

CA NA RY ,C ROCODILE ,DUCK ,FRO G , O STRICH 
eggs
breat h

CR O CODILE ,DU CK ,F RO G, SA LM O N,S HA RK  
egg s
s wim

CA NA RY ,CRO CO DILE ,DUCK ,FRO G ,O S TRICH,S A LM O N,S HA RK   
eggs

FRO G 
eggs
breath
s wim

O S TRICH 
eggs
feather
breath

S H ARK  
eg gs
te eth
s wim

DUCK
eggs
feather 
fly
breat h
s wim

CRO CO DILE  
eggs
breath
teeth
s wim

CA NA RY  
eggs
feather
fly
breath



69

Printed 4/6/23

Figure 30.48 - Graphical representation of a concept hierarchy (empty source object 
and only proper attributes shown)

Figure 30.49 - Graphical representation of a concept hierarchy (empty source object 
and only proper attributes shown, G part renamed)

      

   

   

      

   

SALMON CROCODILE,DUCK,FROG CROCODILE,SHARK  
teeth

CA NARY,DUCK  
fly

CA NARY,DUCK ,OS TRICH 
feather

CANARY,CROCODILE,DUCK ,FROG,OSTRICH 
breath

CROCODILE,DUCK,FROG,SALMON,SHARK 
swim

CANARY,CROCODILE,DUCK,FROG,OSTRICH,SALMON,SHARK 
eggs

FROG OSTRICH SHARK 

DUCK 

CROCODILE 

CANARY 

SALMON Aquatic breathing oviparous Aquatic predator oviparous 
teeth

Flying bird 
fly

Bird 
feather

Breathing oviparous 
breath

Aquatic oviparous 
swim

Oviparous 
eggs

FROG OSTRICHSHARK

DUCK

CROCODILE

CANARY

SALMON Aquatic breathing oviparous Aquatic predator oviparous 
teeth

Flying bird 
fly

Bird 
feather

Breathing oviparous 
breath

Aquatic oviparous 
swim

Oviparous 
eggs

FROG OSTRICHSHARK

DUCK

CROCODILE

CANARY



70 Case study 30 • Classifying objects

Printed 4/6/23

By applying both the descending inheritance (of the M part) and the ascending inher-
itance (of the G part), we get a particularly concise form of the concept hierarchy,
shown in Figure 30.50. Please note that in this form, the concepts no longer are iden-
tified by their G part alone.

Figure 30.50 - Minimal structure of a concept hierarchy

30.14 Querying the concept hierarchy

The hierarchical structure is an appropriate support to query the concepts. Let us
base our reasoning on the schema of Figure 30.35 in which only the proper
attributes of the COUNTRY-10 hierarchy are shown. We remember that the objects
are countries and the attributes are socio-economic properties of these countries.
Considering the large number of new concepts generated (see the table of Figure
30.34), giving them meaningful names is unrealistic. Considering this hierarchy as a
database, we can ask such questions as the following (X is a variable containing the
G part of a concept):

• how many objects does concept X comprise:
 select itemLen(G,',') from CONCEPTS where G = :X;

• how many subconcepts does concept X have:
 select count(*) from ISA where Super = :X; 

      

   

   

      

   

F RO GS HA RK
teeth

CA NA RY
fly

O S TRICH
feather

 
breath

S A LM O N
s wim

 
e ggs

DUCK

CRO CO DILE



71

Printed 4/6/23

• The G part of concept C is a superset of the G part of each of its subconcepts. The
larger the subconcept, the more influence it has on the composition of C. What are
the most influential subconcepts of each superconcept:

 select Super,Sub,Size
 from  (select Sub,Super,
               itemLen(Sub,',') as Size,
               max(itemLen(Sub,','))
                   over (partition by Super) as MaxSize
        from   ISA
        )
 where Size = MaxSize;

Inference rules
The analysis of the hierarchy allows us to discover hidden rules that hold in the
source data. We briefly describe two of them, drawn from reference
[D’Aquin, 2020]. 

In subconcept C, let A be a proper attribute and B an attribute inherited from one
of its direct superconcept D. The descending inheritance mechanism implies that in
any direct or indirect subconcept of C, the M part comprises both attributes A and B.
This leads to an interesting consequence:

any object with attribute A also have attribute B,

this property can be restated as A implies B and formalized by the dependency rule
A → B.

To appreciate the importance of this rule, let the objects be the countries represented
in a COUNTRY context, A be inflation_rate:high and B be life_expectancy:low. If the
rule A → B holds in the hierarchy, this means that all the countries with a high infla-
tion rate also have a low life expectancy:

inflation_rate:high → life_expectancy:low

The second rule looks like, in a sense, the inverse of the first one. Again, we
consider the (C<D) example discussed above. Let us call MC the M part of C and MD
the M part of D. Let us also call SC and SD the sizes of C and D respectively and Mc-
d the attributes of C that are not in D (proper or inherited from other superconcepts).
If SC is very close to SD, say, with a difference of 10 percent, then we can assert that
MD implies Mc-d with a probability of 0.9 (MD →[0.9] Mc-d). Ok, this rule seems a bit
obscure, so let us apply it to the example above. We assume that concept D
comprises 50 countries and concept C, 45 countries. Among the 50 countries that
have a low life expectancy, 45 (or 90%) also have a high inflation rate. Hence the
rule, that we will call probabilistic dependency:

life_expectancy:low →[0.9] inflation_rate:high

The query of Script 30.24 computes the probabilistic dependencies that hold in the
ISA table. Applied to the context COUNTRY-20, with a threshold of 0.9, it generates



72 Case study 30 • Classifying objects

Printed 4/6/23

the dependencies shown in Figure 30.51. We observe that this result can include
transitive dependencies (here, 16 →[0.9] 9). Their elimination is left as an exercise.

 

Script 30.24 - Computing the probabilistic dependencies (probability 0.9)

+------+-----------+-------+
| Left | implies   | Right |
+------+-----------+-------+
| 16   | -->[0.9]  | 20    |
| 16   | -->[0.9]  | 9     |
| 20   | -->[0.91] | 9     |
+------+-----------+-------+

Figure 30.51 - The probabilistic dependencies in COUNTRY-20

30.15 Applications

The most general application domain of FCA is knowledge discovery and
processing [Kuznetsov, 2004,2015], a definition that encompasses a very large
variety of more specific applications. The examples used in this study suggest some
typical objectives of FCA techniques, in particular:
– elicitation of hidden significant patterns, such as concepts, hierarchy of concepts

and dependencies, in source data collections
– normalization of database schemas by reconstruction of subtype/supertype struc-

tures, both in the elaboration of the conceptual schema of a database under
construction and in the reverse engineering of legacy databases [Beeri, 1999]
[Hainaut, 2002].

The basic mechanism of FCA being to classify uninterpreted objects, it can be
applied to any kind of these objects, such as documents and messages
[Cigarrán 2016]. 

In software engineering, a pertinent architecture can be suggested among a
collection of programs based on common resources: database tables read or
updated, APIs, dialog boxes, user classes, access control (user-privilege relation).

select SuperM as Left,
       '-->['||round(1.*SubSize/SuperSize,2)||']' as 'implies',
       itemExcept(SubM,SuperM,',') as Right
from (select Sub,itemLen(Sub,',')     as SubSize,
             Super,itemLen(Super,',') as SuperSize,
             C1.M as SubM,C2.M as SuperM
      from   ISA,R C1,R C2
      where  1.*SubSize/SuperSize >= 0.9
      and    ISA.Sub = C1.G and ISA.Super = C2.G
      );



73

Printed 4/6/23

In the database realm, besides the forward and reverse engineering mentioned
above, a plausible schema can be extracted from a schema-less table (collection of
rows with no common structure). Such application is common in NoSQL databases
in which each record defines its own structure38.

30.16 A short bibliography

[Beeri, 1999] C. Beeri, A. Formica, M. Missiko. Inheritance hierarchy design in
object-oriented databases, Data & Knowledge Engineering 3 0(1999) pp.191–216

[Castellanos 2017] A. Castellanos, J. Cigarrán, A. García-Serrano. Formal concept
analysis for topic detection: A clustering quality experimental analysis, Information
Systems, 66(2017) pp. 24–42

[Chein, 1969] M. Chein. Algorithme de recherche des sous-matrices premières
d’une matrice, Bull. Math. R.S. Roumanie, 13, 1969

[Cigarrán 2016] J. Cigarrán, A. Castellanos, A. García-Serrano. A step forward for
Topic Detection in Twitter: An FCA-based approach, Expert Systems With Applica-
tions 57(2016) pp. 21–36

[D’Aquin, 2020] M. D’Aquin. A Demystifying Introduction to Formal Concept
Analysis (FCA) [https://towardsdatascience.com/a-demystifying-introduction-to-
formal-context-analysis-fca-ab8ce029782e]

[Hainaut, 2002] J.-L. Hainaut. Introduction to Database Reverse Engineering
[https://projects.info.unamur.be/~dbm/mediawiki/
index.php?title=LIBD:OUVRAGES-WEB]

[Huchard, 2000]  M. Huchard, H. Dicky and H. Leblanc. Galois Lattice as a Frame-
work to Specify Building Class Hierarchies Algorithms, RAIRO-Theor. Inf. Appl.,
34 6 (2000) 521-548 [https://www.rairo-ita.org/articles/ita/pdf/2000/06/ita0110.pdf]

[Kuznetsov, 2001] S. O. Kuznetsov, S. A. Obedkov. Comparing Performance of
Algorithms for Generating Concept Lattices, ICCS’01 Int’l. Workshop on Concept
Lattices-based KDD pp. 35–47 [https://ceur-ws.org/Vol-42/paper3_kuznetsov.pdf]

[Kuznetsov, 2004] S. O. Kuznetsov. Machine Learning and Formal Concept Anal-
ysis, CFCA 2004, LNAI 2961, pp. 287–312, 2004. Springer-Verlag

[Kuznetsov 2015] S. O. Kuznetsov1 and A. Napoli. Formal Concept Analysis:
Themes and Variations for Knowledge Processing, Tutorial on Formal Concept
Analysis at IJCAI 2015, Buenos Aires, July 27th 2015 [https://ijcai-15.org/down-
loads/tutorials/T23-FCA.pdf]

38. Please note that the SQLfast environment includes a subsystem allowing users to create and
exploit schema-less tables. See SQLfast-Manual, Chapter 25 - Dynamic columns and schema-
less tables.



74 Case study 30 • Classifying objects

Printed 4/6/23

[Sarmah, 2013] A.K. Sarmah, S.M. Hazarika, S.K. Sinha. Formal concept analysis:
current trends and directions, June 2013, Artificial Intelligence Review 44(1):1-
40, June 2013 [https://www.researchgate.net/publication/255999110_
Formal_concept_analysis_current_trends_and_directions]
[Wikipedia, 2023] Formal Concept Analysis [https://en.wikipedia.org/wiki/Formal_
concept_analysis]


