Case study 27

Conway’s Game of Life

Objective. This study is about games, worlds, life and death, borderline
SQL applications and dramatic database optimization. The goal of the
project is to implement the graphical animation of Conway’s cellular
automata, aka Game of Life. A game of life is made up of an infinite
array of cells in which live a population of small animals, each of them
occupying one cell. The transition of one state of the population to the
next one is specified by a set of simple computing rules. The goal of the
game is to observe and study the evolution of the population. A game of
life is implemented as a table in a database in which each row contains
the coordinates and the content of a cell. The algorithms developed in
this study load the initial state of a population then compute the next
states thanks to the evolution rules. Finally, they visualize this evolution
as an animated cartoon. The contribution of this study is twofold. It
stresses the importance of database and algorithm optimization (the last
version is 1,400 times faster than the first one) and it shows that rela-
tional databases and SQL may be quite efficient to develop matrix
manipulation procedures (the SQL version is nearly 7 times faster than
the equivalent Python program).

This study is also a tribute to E. F. Codd, the inventor of the relational
model of databases, who first studied self-replicating cellular automata.

Keywords. cellular automata, replicating system, Conway, glider,
Codd, matrix manipulation, algorithm optimization, database optimiza-
tion, declarative algorithm, table indexing, in-memory database, CTE,
recursive query, vector graphics, animated simulation, Python.

2 Case study 27 < Conway’s Game of Life

27.1 Introduction

Cellular automata are mathematical objects invented by J. H. Conway in 1970 in
search for self replicating systems. A cellular automaton lives in a 2-dimensional
grid made up of square cells. It has an initial state that evolves as a sequence of states
derived according to a small set of elementary transformation rules. Each state is
defined by certain cells containing a small critter of which we only know that it is
present or not. The presence of such an animal in a cell (which is then called a live
cell) is represented by a black square while an empty cell (a dead cell) is white.

In Figure 27.1, the grid shows the initial state of the most simple glider (top), a
popular object that moves like a wriggling, hyperkinetic worm crawling down the
grid diagonal. It comprises 5 live cells. After 4 steps, it recovers its form but one
step down along the diagonal. And so on. Forever ...

The evolution rules are very simple. To compute the next state of a cell of an
automaton, we count those of its eight neighbors that are live. Let N be this number.
Then we apply the following transformation rules:

— if N = 2, the cell contents is preserved, be it live or dead,
— if N = 3, the cell becomes (or remains) live,

— for all the other values of N (0, 1, > 3), the cell becomes dead.

18]
=l
-
|
-]

Figure 27.1 - The starting first five states of a simple Glider

For reasons that are not hard to guess, this system has been given the popular name
of Game of Life. It has triggered much research among computer science theore-
tists!, epidemiologists studying how diseases spread and vanish? and in some gamer

Printed 28/11/20

communities3. In particular, several families of patterns have been identified: still
(each state is the same as the initial one), gliders (moving patterns), guns (that oscil-
late while producing shells, that may be gliders), oscillators, mirrors, bumpers,
spaceships, etc. Some patterns move, grow infinitely#, vanish, oscillate, replicate
themselves or produce other patterns. Just like societies in real life! See http://en.wiki-
pedia.org/wiki/Conway's_Game_of_Life as a good starting point.

This topic may come as a surprise in a text devoted to databases and database
programming’. Indeed, animating cellular automata mainly requires much computa-
tion and fast graphical rendering. Not precisely an application domain in which data-
base technology is renowned for! Or is it?

However, by trying to develop cellular automata with the SQLfast environment,
we will encounter several interesting challenges the solution of which can be gener-
alized to other, more mainstream, database problems.

In addition, we will once more appreciate the expressiveness and power of SQL.
As an appetizer, just consider that cellular automata can be elegantly and efficiently
implemented in 2 (two) SQL queries.

27.2 World and automata representation

Cellular automata live in a infinite world. Due to reason that are not worth being
made explicit, we will reduce them to finite worlds, represented by arrays. A world
is represented by table CELL in which each row describes a cell of an array. CELL has
three columns:

— 1, that indicates the line number of the cell,
— J, that represents the column number of the cell,

— C, that indicates whether the cell is live (1) or dead (0).

For instance, row (4,4,1) tells that cell 4,4 is live while row (3,3, 0) denotes a
dead cell. Table CELL is defined as follows:

create table CELL(I integer, J integer, C integer) ;

1. The rules mentioned above define a system that have been proved to be Turing-complete.

2. Thanks to more sophisticated automata, with more than two states (healthy, infected, immune/
dead) and probabilistic evolution rules

3. OK, not quite the same as that of WoW!

4. Seemingly, because this cannot be neither observed nor proved.

5. It is interesting to note that E. F. Codd, the inventor of the relational model of databases,
formerly worked on cellular automata. See for instance E. F. Codd, Cellular Automata, Academic
Press, New York (1968)

Printed 28/11/20

4 Case study 27 < Conway’s Game of Life

Its primary key is (I,J) but we do not declare it for now. Similarly, we do not declare
column not null. The scripts that will make use of this table (as well as of the second
one) are guaranteed to insert correct data.

Computing the next state of an automaton requires that we can analyze all the
cells of the current state unmodified. Therefore, we need an additional array in
which we will store the data required to compute the next state without altering the
current state. In this array, we will store, for each cell, the number of live neigh-
bours. Then, from this information, we will be able to update the contents of table
CELL to create the next state by applying the evolution rules.

This additional array is implemented as table SCORE, with the same structure as
CELL, and in which column N represents the number of live neighbors of cell (1,J):

create table SCORE(I integer, J integer, N integer) ;

For instance, row (2,3, 1) of SCORE tells that cell (2,3) in CELL has only 1 live
neighbor, which is no good news for its viability! Same for the cell corresponding to
row (3,3, 5). On the contrary, row (4, 4, 2) tell that cell (4, 4) will keep its former
state.

Now, we are able to create the database (Script 27.1). Since it will be used only to
compute the successive steps, we declare it as a non persistent, in-memory database.
A world that comprises maxLin lines and maxCol columns is initialized by the
insertion of maxLin XmaxCol cells with ¢ = 0 (Script 27.2). To make the graph-
ical layout more elegant, and to make cell evaluation easier, we leave the first line
and column empty, that is, they are not part of the world. For our experiments, a 50
X 50 square world will prove comfortable enough. Later, we will show that this
algorithm is not fast enough for our ambition, so that we will call it First (or naive)
version.

We also install the initial state of the glider of Figure 27.1 (Script 27.3).

createDB InMemory;
create table CELL (I integer,J integer,C integer) ;
create table SCORE (I integer,J integer,N integer) ;

Script 27.1 - Life Game: creation of the database

for I = [0,$maxLin$];
for J = [0, SmaxCols];
insert into CELL wvalues (SIS,SJS,0);
endfor;
endfor;

Script 27.2 - Life Game: creation of a maxLin x maxCol world - First version

Printed 28/11/20

update CELL set C = 1 where I = 1 and J = 2;
update CELL set C = 1 where I = 2 and J = 3;
update CELL set C = 1 where I = 3 and J = 1;
update CELL set C = 1 where I = 3 and J = 2;
update CELL set C = 1 where I = 3 and J = 3;

Script 27.3 - Life Game: creation of a Glider

27.3 Computing the next state

To compute the next state of the automaton we proceed in two steps: computing the
number of live neighbor cells and updating the current state.

First, we compute the number of live neighbors of each cell and we store these
numbers in table SCORE. This can be done in a single insert SQL query. The
current cell under examination is denoted by alias co while its neighborhood is
explored by alias 1. The relation between c0 and c1 (i.e., the join condition) is that
coordinate I of €1 is between c0.I-1 and c0.I+1 and coordinate J of C1 is
between €0.J-1 and €0.J+1. But we must exclude co itself of course. Value N of
cell co is the sum of the values of ¢ of its neighbor cells. Hence the query of Script
27.4.

The second step consists in updating column € of each CELL row according to the
number of its live neighbors, previously stored in SCORE. This is expressed by a
case construct that assigns the appropriate (0,1) value to column ¢ (Script 27.5).

insert into SCORE(I,J,N)

select C0.I, C0.J, sum(Cl.C)

from CELL CO, CELL C1

where Cl1.I between (C0.I - 1) and (CO0.I + 1)
and Cl.J between (C0.J - 1) and (C0.J + 1)
and not (C1.I = C0.I and C1.J = C0.J)
group by C0.I, C0.J;

Script 27.4 - Computing the neighborhood of the current state - First version

27.4 Graphical display of automaton evolution

Technically speaking, the job is done. However, it would be nice to show graphi-
cally, as a cartoon, the successive states of an automaton. We suggest to convert

Printed 28/11/20

6 Case study 27 < Conway’s Game of Life

these states into a sequence of vector graphics pictures expressed in the SQLdraw
language. These pictures, written in a text file with extension *.draw, can then be
rendered through statement showDrawing (see Chapters 13 and 21 of the Tutorial).

update CELL

set C = (select case
when N<2 then 0
when N=2 then CELL.C
when N=3 then 1
when N>3 then 0 end

from SCORE S
where S.I = CELL.I and S.J = CELL.J) ;

Script 27.5 - Deriving the next state from the current one - First version

The first part of this file, shown in Script 27.6, defines the useful part of the world
(area 192,192) expressed in pixels. Its origin (0, 0) is at the top-left corner of the
graphical space. In this parts the border of the cells are drawn as a grid made up of
two polylines:

polyline "vgrid",1,"grayso": defines the vertical lines of the grid
polyline "Hgrid",1,"grayso": defines the horizontal lines of the grid.

A polyline is a contiguous chain of segments defined by their connection points.
Statement polyline assigns a name to the polyline and specifies the thickness and
the color of its segments (the fourth parameter is ignored). It is followed by the list
of the coordinates of its points.

area 192,192

polyline "vgrid",1, "gray80",""
0,192

0,0

0,192

12,192

12,0

polyline "Hgrid",1, "gray80",6""
192,0

0,0

192,0

192,12

0,12

Script 27.6 - SQLdraw script creating the grid of a game

When a state is available, we generate the SQLdraw command points that displays
its current population. This command comprises a header, follows by a series of
points, each positioned on a live cell. The header assigns a name to the set of points

Printed 28/11/20

and specifies its shape: thickness and color of its border polygon, filling color and
the point type, here type 23 (see the point catalogue in Chapter 21 of the Tutorial).
Point type 23 is a black 11x11 pixel square with a small white hole in its center. If we
allow room for a separation of 1 pixel for the grid, each cell is 12 pixel large. Each
point is defined by its coordinates and an optional label. The coordinates of a point
are those of its center, so, the graphical coordinates of cell I,J are (6 + 12* J, 6 + 12 *
I).

Animation is created as follows. Once a state has been drawn, a wait period of,
say, 150 ms., is started (wait 150), after which, the last state is erased (delete
last). Then, the next state is drawn.

For instance, the first two states of the Glider automaton (Figure 27.1) can be
displayed by Script 27.7.

points "life-0",1,"black", "black", 23
30,18,""

42,301""

18,42,""

30,42,n||

42,421||u

wait 150

delete last

points "life-1",1,"black", "black",23
18,30,""

42,301""

30,421nu

42,42,n||

30,541""

wait 150

delete last

Script 27.7 - SQLdraw script of the first two states of the Glider

27.5 Generation of SQLdraw scripts.

Script 27.8 generates the points command of the current state from the contents of
table CELL. Variables Lnbr and Cnbr specify the numbers of the last line and column
of the world. Note that the delete statement is lacking. It is generated elsewhere to
avoid erasing the very last state.

27.6 Packaging the LIFE application

We have enough material to define the architecture of our LIFE application.
Remember that the application available in directory Case_Life_Game may be a bit

Printed 28/11/20

8 Case study 27 < Conway’s Game of Life

different (more sophisticated) from the description given below. More on this in the
last section.

The main script could look like Script 27.9.

write points "life-$seqgs$",1,"black", "black",23;
for I = [0,SLnbrS|[;
for J = [0,S$CnbrsS|[;
extract R = select C from CELL where I = $IS and J = $JS;
if (SRS = 1);
compute X = 6 + $JS * 12;
compute Y = 6 + SIS * 12;
write X,SYS,"";
endif;
endfor;
endfor;
if ($Delay$ > 0) write wait $Delays$;

Script 27.8 - Generation of the SQLdraw script of the current state - First version

It first comprises a simple dialogue to collect the useful world size (variables Lnbr
and Cnbr), the number of successive states to compute (variable Niter) and the
wait delay, in ms (variable Delay). Then, it calls the three database creation proce-
dures: LIFE-Create-Database.sql for the database, LIFE-Create-World.sql that
inserts the world cells in the database and _LIFE-Create-Glider.sql that installs the
initial state of the Glider of Figure 27.1. Procedure _LIFE-Compute-History.sql is in
charge of computing and generating the Niter successive states of the automaton in
text file LIFEGAME-Glider .draw. Finally, it shows the animated rendering of the
Niter states through statement showDrawing.

set Lnbr,Cnbr,Niter,Delay = 15,15,40,150;

ask-u Lnbr,Cnbr,Niter,Delay = [Simulation parameters]
Lines: |Columns: | Iterations: |Delay (ms):;
if ('SDIALOGbuttonS' = 'Cancel') exit;

execSQL LIFE-create-Database.sql;
execSQL LIFE-create-World.sql;
execSQL LIFE-create-Glider.sql;
execSQL LIFE-compute-History.sql;
showDrawing LIFEGAME-Glider.draw;

Script 27.9 - The main script of the LIFE application

Procedure _LIFE-Create-Database.sql includes the statements of Script 27.1. Proce-
dure LIFE-Create-World.sql is defined from Script 27.2 while procedure LIFE-
Create-Glider.sql is defined from Script 27.3.

Printed 28/11/20

The most interesting procedure obviously is _LIFE-Compute-History.sql, that does
all the job. Its code is shown in Script 27.10. It starts by opening external file LIFE-
GAME-Glider.draw, that will receive the SQLdraw statements [1] and finishes by
redirecting the output channel to window, which closes the external file [7].

Statements [2] and [3] insert the points (the live cells) of the starting state of the
automaton. For each of the following states,

— statement [4] inserts an SQLdraw delete statement to erase the last state from
the drawing area,

— statement [5] computes the next state as suggested in Scripts 27.4 and 27.5,

— statement [6] inserts into the SQLdraw script the points (the live cells) of the
current state.

outputOpen LIFE-draw.draw; [1]
set seq = 0; [2]
execSQL LIFE-Generate-Current-State.sql; [3]
for seq = [1,Niter];
write delete last; [4]
execSQL LIFE-Compute-Next-Step.sql; [5]
execSQL LIFE-Generate-Current-State.sql; [6]
endfor;
outputAppend window; [7]

Script 27.10 - Procedure _LIFE-Compute-History.sql

27.7 First performance analysis

We would like the LIFE application to show the result as soon as the parameters
have been entered. Unfortunately, this is not the case, even if the speed of computing
and generating 30 states of the Glider automaton in a 15x15 world seems to be
acceptable with this respect: 2.6 s. We guess than wider worlds, larger automata
examined through hundreds of states will require much longer computing and gener-
ation time.

Trying to improving the performance of the LIFE application is an interesting
challenge. It will allow us to better understand how a database and a database appli-
cation work and to experiment with various ways to boost the performance of a
database.

To measure the impact of performance improvement techniques, we need a refer-
ence point. Computing 100 successive states of the Glider automaton in a 60x60
world seems a good starting point: it is sufficiently small to imply a bearable
computing time with the current version and sufficiently large to let us compare the

Printed 28/11/20

10

Case study 27 < Conway’s Game of Life

successive optimization. The run times of the main four procedures are shown in
Figure 27.2. A total of about 14 minutes is quite impressive! Not surprisingly, the
major part of the cost (> 99.6%) is that of procedure LIFE-compute-History.sq|.

procedure raw version
Create-Database 0.000
Create-World 2.7
Create-Glider 0.002
Compute-History 835.715
Total 838.417

Figure 27.2 - Computing times of the raw version (Glider, 60X60 world, 100 iterations)

27.8 Optimization 1: indexing tables

Let us first examine the way the database is used. Procedure LIFE-Create-World.sql is
a sequential process while LIFE-Create-Glider.sql makes a small number of random
updates. There is no real room for improvement in the first three procedure, at least

for now.

Procedure LIFE-Compute-History.sql is our main target. It includes heavy database

access and update queries:

* In procedure LIFE-Compute-Next-Step, query 27.4 executes a self-join followed
by a group by operator on table CELL. Both operators are based on columns I

and J.

* In procedure LIFE-Compute-Next-Step, query 27.5 is a massive update of table
CELL from table SCORE. The 60x60 cell updates require each a random access

to SCORE based on (1, J) values.

* In procedure LIFE-Generate-Current-State, the double loop executes, for each
state, 60x60 random accesses to table CELL, that is, 3,600 select queries on

column I and J, that is, 360,000 queries for the 100 states.

From this simplified analysis, we conclude that an index on column I and J on both
tables CELL and SCORE should decrease access time in all these queries.

Let us try that. We change the contents of procedure LIFE-Create-Database.sql by

Script 27.11, that declares these indexes.

Printed 28/11/20

1"

createOrReplaceDB LIFE.db;

create table CELL (I integer,J integer,C integer)
create table SCORE(I integer,J integer,N integer)

create index XCELL on CELL (I,J);
create index XSCORE on SCORE (I,J);

Script 27.11 - Life Game - Creation of the LIFE.db database with indexes

The resulting execution times (Figure 27.3) are quite encouraging.

procedure raw version indexed
Create-Database 0.000 0.001
Create-World 27 27
Create-Glider 0.002 0.001
Compute-History 835.715 442.752
Total 838.417 445.454

Figure 27.3 - Indexing the database more than halves the run time

Encouraging but still excessive. Waiting more than 7 minutes for the show will not
attract a large audience! Actually, procedure LIFE-Compute-History.sql mixes data-
base queries and non-database statements, so that its global execution time figure is
too gross to allow us to identify other ways of improvement.

Splitting this time into computation time (LIFE-Compute-Next-Step) and genera-
tion time (LIFE-Generate-Current-State) could be quite informative. We change the
code of script LIFE-Compute-History.sql a little bit, by deactivating the two state-
ments execSQL LIFE-Generate-Current-State.sqgl (we merely prefix them
with the ' --' comment indicator). The resulting times when executing the raw and
indexed versions are stunning (Figure 27.4): the time drops from 566.45 s. to 6.36 s.!
Subtracting these times from the global times provide the execution time of LIFE-
Generate-Current-State.f

6. To be quite precise, this time also includes the execution time of the proper statements of
procedure LIFE-compute-History.sql and of procedure LIFE-generate-grid.sql. However, these
times are very small and can be ignored. For instance, generating the 60x60 grid takes 0.4 sec.

Printed 28/11/20

12 Case study 27 < Conway’s Game of Life

procedure raw version indexed
Create-Database 0.000 0.001
Create-World 27 27
Create-Glider 0.002 0.001
Compute-History 835.715 442.752
- Compute-Next-Step 16.547
- Generate-Current-State 426.205
Total 838.417 445.454

Figure 27.4 - Splitting times between computing and generation

Clearly, our optimization effort should now concentrate on the generation process.

27.9 Optimization 2: windowing table access

The SQL queries of procedures LIFE-compute-History.sql and LIFE-Generate-Current-
State visit all the cells of the world (and, in parallel, those of the SCORE table, which
has the same size). In fact, when we consider the unitary transition from one state to
the next one, we observe that the set of cells that could change often is quite small.

Considering the fourth state of the Glider automaton represented in Figure 27.1,
the cells that are likely to change in the next state are (1) the five live cells and (2)
their seventeen neighbor cells. They are shown in the left array of Figure 27.5: live
cells in black and their neighbors in gray. So, we only need to compute the next state
for these cells, ignoring all the white cells. Similarly, when generating the SQLdraw
statements of the current state, examining the white cells would be pure wasted
time.

However, the area defined in this way can be irregular and quite difficult to
define. We will therefore consider a simpler area, a bit larger than necessary, but
easier to compute: the bounding rectangle. It comprises the smallest rectangle that
completely contains the automaton plus a border one cell large (Figure 27.5, right
array).

The coordinates (11,12,J1,J2) of this bounding rectangle can be computed by the
following SQL query:

select min(I)-1 as I1l, max(I)+1 as I2,
min(J)-1 as J1, max(J)+1 as J2
from CELL where C = 1;

Printed 28/11/20

13

L= -Ioi
HEE [[][]
[[T 111 HEEEEN
L - -
TEEEE - [
HEE [[T[]

i of i of

Figure 27.5 - The bounding area of an automaton (strict and rectangular)

This formula must be refined a little bit to avoid negative values for the cells at the
edge of the world:

select max(min(I)-1,0) as Il, min(max(I)+1,SLnbrsS-1) as I2,
max (min(J)-1,0) as J1, min(max(J)+1,SCnbrs-1) as J2
= 1;

Its translation in the SQLfast syntax is straightforward:

extract I1,I2,J1,J2 =

select max(min(I)-1,0),min(max(I)+1,$Lnbrs$-1),
max (min(J)-1,0) ,min (max (J)+1, $Cnbr$-1)
from CELL where C = 1;

We can now adapt (what we will call windowing) the SQL queries so that they only
examine and process the cells that lie in the (11,12,J1,J2) rectangle (Scripts 27.12 and
27.13). Let us now measure the effect of this optimization (Figure 27.6).

procedure raw indexed window
Create-Database 0.000 0.001 0.001
Create-World 27 2.7 27
Create-Glider 0.002 0.001 0.001
Compute-History 835.715 442.752 417
- Compute-Next-Step 16.547 0.33
- Generate-Current-State 426.205 3.84
Total 838.417 445.454 6.87

Figure 27.6 - The effect of windowing SQL queries

The improvement is really dramatic: the execution time of LIFE-Compute-History
has been divided by more than 100!

Printed 28/11/20

14 Case study 27 < Conway’s Game of Life

insert into SCORE(I,J,N)
select C0.I, C0.J, sum(Cl.C)
from CELL CO0, CELL C1
where CO0.I between $I1$ and $I2%

and C0.J between $J1$ and $J2%

and Cl.I between (C0.I - 1) and (CO0.I + 1)
and Cl.J between (C0.J - 1) and (C0.J + 1)
and not (Cl1.I = C0.I and C1.J = C0.J)

group by C0.I, C0.J;

update CELL

set C = (select case
when N<2 then 0
when N=2 then CELL.C
when N=3 then 1
when N>3 then 0
end

from SCORE S

where S.I = CELL.I and S.J = CELL.J)
where I between $I1$ and $I2$
and J between $J1$ and $J2%;

Script 27.12 - Windowing the SQL queries of procedure LIFE-Compute-History.sql

for I = [$I1$,$I2S(;
for J = [$J1%,$025%([;
extract R = select C from CELL where I = I and J = $JS;
if (SRS = 1);
compute X = 6 + $JS * 12;
compute Y = 6 + S$IS * 12;
write X,SYS,"";
endif;
endfor;
endfor;

Script 27.13 - Windowing the loops of procedure LIFE-generate-Current-State.sql

27.10 Optimization 3: building a cheap world

At this stage, one of the highest cost becomes that of creating the world (2.7 sec.) by
procedure LIFE-Create-World.sql. The reason is the same as for the generation
process: the SQLfast interpretation of the two embedded loops. There is several
ways to decrease the building cost. We will examine three of them.

Printed 28/11/20

15

1. Executing a predefined script that creates the world

Instead of generating on the fly and executing the insert queries as shown
in Script 27.2, we store these queries in a standard SQLfast script file for
further reuse. The cost of creating the world is that of executing this script,.
This cost is much lower (about 0.05 s.) but this technique requires that we
create one or several such predefined scripts.

2. Using a preloaded database

The idea is similar: we create a collection of predefined databases in which
worlds of various sizes have been preloaded. Same improvement and draw-
back as above.

3. Creating the world with a recursive query

We keep Script 27.2, but we translate the double loop into a recursive CTE.
The script is shown in Script 27.14. Outstanding result: the 60 X 60 world is
created in 0.008 s. instead of 2.7. And no cumbersome additional scripts or
databases!

This technique is quite elegant, but also is a bit less intuitive for users less
familiar with recursive queries, and therefore deserves some explanations.

The first recursive CTE, INIT1, creates rows (1,0,0) for | in [0,maxLin]. In other
terms, it creates the cells of the first column of the maxLin X maxCol world.

The second CTE, INIT2, starts from these cells to create the remaining cells of
each line of the world.

with recursive
INIT1(I,J,C)
as (select 0,0,0
union
select I+1,J,0 from INIT1 where I < S$maxLin$),
INIT2(I,J,C)
as (select * from INIT1
union
select I,J+1,0 from INIT2 where J < SmaxCols)
insert into CELL select * from INIT2;

Script 27.14 - Building a world through a recursive query

Considering the last technique, we get the result shown in Figure 27.7. The total
execution time now drops to 4.18 sec., less than 1 sec. of which being spent by the
execution of SQL queries. We can admit that this figure is quite satisfying.

Printed 28/11/20

16 Case study 27 < Conway’s Game of Life

procedure raw indexed window world
Create-Database 0.000 0.001 0.001 0.001
Create-World 2.7 2.7 2.7 0.008
Create-Glider 0.002 0.001 0.001 0.001
Compute-History 835.715 442.752 4.17 417
Total 838.417 445.454 6.87 4.18

Figure 27.7 - Creating a world through a recursive query

27.11 Optimization 4: let SQL generate vector graphics

Now, the highest cost is again that of procedure Compute-History, and more specifi-
cally procedure Generate-Current-State (run time 3.84 s.). Its code is that of Script
27.13. It comprises two embedded loops parsing the live cells of the current world
window. For each of these cells, two elementary computations and the writing of
their result as a short string.

This can easily be done by an SQL query. Let us convert the current script into
pure SQL. We consider temporary table LINE in which we will insert the SQLdraw
commands that draw the points of the successive generations of the automaton:

LINE (TXT)

The rewriting of Script 27.13 as an SQL query is shown in Script 27.15. The
contents of table LINE is then copied in the SQLdraw file.”

The run time of this generation dramatically drops, from 3.84 s. to 0.593 - 0.33 =
0.26 s. (Figure 27.8).

insert into LINE

select cast (6+I*12 as char)||','||cast(6+J*12 as char)||', """
from CELL

where C = 1

and I between $I1$ and $I2$ and J between $J1S$ and $J2S;

Script 27.15 - Rewriting Script 27.13 as a pure SQL query

7. This way of working could be disputed. Indeed, we postulate that the order of the rows of the
result set will be that of the insertion queries. Since table LINE has no key nor index, most DBMS
will implement it as a pure sequential structure, first in, first out. If we are uncomfortable with
this hypothesis, we could add columns STEP, that represents the current step, and ORD, that
specifies the position of the command in the SQLdraw file. When writing in this file, the TXT
values are output in order by STEP, ORD. This will just add a dozen milliseconds to the total
cost.

Printed 28/11/20

17

procedure raw indexed | window world graphics
Create-Database 0.000 0.001 0.001 0.001 0.001
Create-World 2.7 27 27 0.008 0.008
Create-Glider 0.002 0.001 0.001 0.001 0.001
Compute-History 835.715 | 442.752 417 4.17 0.593
Total 838.417 | 445.454 6.87 4.18 0.603

Figure 27.8 - Generating vector graphics with an SQL query

27.12 Optimization 5: Rewriting the application in Python

Of course, rewriting the procedures in a standard programming language, like Java
or Python, should lead to still better times. Quite surprisingly, the improvement is
more subtile than it could be thought. Indeed, the generation of the SQLdraw file
through a Python program that has the same structure as the SQLfast application
(including windowing) and that implements CELL and SCORE by lists of lists
instead of database tables leads to a run time of 3.52 s., that is, nearly 6 times slower
than SQLfast version.® If we focus on the core computing, that is on the work of
procedure Compute-Next-Step.sql, we observe that computing the 100 states by the
Python program costs 2.48 s., to compare with 0.33 s. for the SQLfast application:

the SQL engine appears to be more than 7.5 times faster than Python.

procedure raw indexed | window world graphics | Python
Create-Database 0.000 0.001 0.001 0.001 0.001
Create-World 27 27 2.7 0.008 0.008
Create-Glider 0.002 0.001 0.001 0.001 0.001
Compute-History 835.715 | 442.752 4.17 417 0.593
Total 838.417 | 445.454 6.87 4.18 0.603 3.52

Figure 27.9 - Generating drawing with an SQL query

To be fair, this is just one experiment, on one small automaton, implemented in a
dynamic language that is not known for its lightening speed (C or even Java could

8. Program LIFE-Game-in-Python.py is included in the SQLfast distribution.

Printed 28/11/20

18

Case study 27 < Conway’s Game of Life

do better). However, it provides an interesting information on the ability of an SQL
engine to efficiently perform matrix manipulation.

27.13 Some representative Conway’s automata

The literature and the many dedicated web sites provide countless automata, the
starting states of which range from three to several thousands live cells. For instance,
try video clip http://www.youtube.com/watch?v=C2vgICfQawE for a dramatic presen-
tation of outstanding patterns, some of them comprising hundreds of thousands of
cells. We present here below some of the most popular cellular automata.

Starting state

Name and family

Elementary glider. This automaton

a moves but does not grow. It has a
..= period of 4 states.
Blinker. The simplest oscillator with
two distinct states.
-]
Blinker2. After a dozen evolution
= states, explodes into four simple Blink-
II= ers.
Beehive. Still automaton. Each life cell
.II. has exactly two live neighbors.
an
Pentadecathlon. Oscillator with a
- - period of 15 states.
HE HEEE On
a a

Printed 28/11/20

19

FlyingSaucer. Transforms into six
simple Blinker.

][]
-] -]
][]
Buckaroo. Oscillator with a period of
- |
m B 30 states.
-
-] H B
-] -
H B [
| |
Upside-Down. Expands then shrinks
[i i
B m into four still 2x2 squares.
B B
-]

27.14 Family life

The initial state of the Gosper Gun automaton comprises four entities: two bumpers
(the left and right side 2x2 squares) and two generating entities (we will call them the
parents) moving horizontally in opposite directions (Figure 27.10). Together, the
parents form the so-called Gun. When a parent touches a bumper, it moves in the
reverse direction, toward its partner. When the parents meet, they generate a little
glider (as is natural for parents), after what they reverse their direction and target the

bumpers.

=10]
|
[|
-] [HE
-] [HEA
1| a []
[-] a |
-] [-]
-]
|-
K1 _'lJ

Figure 27.10 - Initial state of the Gosper Glider Gun

Printed 28/11/20

20 Case study 27 < Conway’s Game of Life

The Gosper Gun has a period of 30 states. This means that every 30 iterations, the
couple of parents (the Gun) recovers its initial state (Figure 27.11) and has generated
a new glider. The total time to compute and generate 90 states, that is three periods,
i 2.6 s.

ol x|
|
H B
-] -] -1 |-
| 11 [}
[a - [-]
[]| [| H BHn H B
[-] [| [|
|
-] -]
|
[[
[]
H B
[[]
[]
Kl ;I_I

Figure 27.11 - The Gosper Gun at its 60t states. Two gliders have been generated.

27.15 Lessons learned

As it has been usual in most case studies developed so far, the very goal of this one
is not to solve a specific problem, i.c., animating Conway’s cellular automata,’ but
rather to illustrate general strategies of problem solving. One of the most interesting
aspect of this study is the various ways a slow naive solution can be improved. Let
us recall and comment the design decisions leading to the creation of worlds and
automata and to the computing of their successive states.

1. Using an in-memory database. The main cost of data intensive applications
is that of external memory access (such as reading from and writing to mag-
netic disk). Maintaining the data needed by the application in main memory
allows keeping this cost as low as possible. Making the whole database reside
in main memory is one of the simplest way to avoid this cost.!? This is partic-

9. Let us be honest, solving this problem is fun but not terribly useful in the real life!

10. The other technique consists in assigning a large buffer to the database so that the data are
read only once from the disk, then kept in the buffer, so that further access will find them in main
memory, saving costly disk access. This technique requires less main memory space but may be
less efficient than an in-memory database.

Printed 28/11/20

21

ularly effective when the database is transient (which is the case of our data-
base) and fairly large.

2. Dropping integrity constraints. As a general rule, the critical properties of
the data must be expressed as integrity constraints. Uniqueness constraints
must be ensured by primary and unique keys, referential constraints must be
translated into foreign keys and mandatory values into not null constraints.
More complex properties can be expressed by check predicates or by trig-
gers. This is quite true for general purpose databases, that are modified by
several agents, from external sources, both likely to be unreliable. Of course,
this security has a cost, the ROI being a high data quality. In some cases how-
ever, this cost can be avoided, notably when only one reliable process is in
charge of updating the data. This (hopefully!) is the case of the application we
have developed in this study. This is why we have declared no primary nor for-
eign keys and no not null constraints.

3. Creating indexes. An index, if carefully designed, reduces the cost of access-
ing a set of selected rows in a table (for reading or updating). And this, all the
more so as the table is large and this set is a small part of this table. Though
we have experimented on very small tables, we have observed a drastic im-
provement in execution time of the application.

4. Reducing the problem space. The first, naive, algorithms were built to ex-
plore, analyze and potentially update all the cells of the worlds. This process
was useless for most of these cells. Identifying the smallest possible subset of
cells likely to be usefully examined and modified has lead to an impressive
gain of execution time. This identification is an essential part of the problem
modeling process.

5. From procedural to declarative expressions. This last aspect may be one of
the most important in the context of this series of case studies. Most program-
mers, be they professional or casual, tend to apply a procedural reasoning
when they have to solve problems such as those of this case study. The main
pattern of this reasoning could be informally translated as:

for each element e of set E, execute action A on e.

Hence the multiple loops that structure the algorithms of the naive version.
Most such loops translate a higher level declarative reasoning that can be
expressed into an SQL query, recursive!! or not. These queries are pre-
processed by the optimizer of the SQL engine and translated into an access
plan quite often much more efficient than the procedural version. In our
application, the gain was very dramatic.

Relational databases and the SQL language are often considered to be poorly fit to
matrix manipulation. Surely, they are not the primary tools we can think about for

11. Many recursive procedures can be converted into loop-based structures. What we suggest
here is to apply the converse and to let the SQL engine apply this conversion. This approach is
natural to functional and logic programmers, but less familiar to mainstream developers.

Printed 28/11/20

22 Case study 27 < Conway’s Game of Life

such operations. However, this study shows that, in some cases, when they are care-
fully crafted, SQL applications can provide simple, intuitive and quite efficient solu-
tions without requiring the use of special-purpose languages and environments.

Note: trying alternative algorithms

The technique applied in this study may be the most intuitive but it is not the only
one that have been documented. The alternative approach described below is as
simple but may be more efficient:

Instead of visiting all the neighbors of each cell, be it live or dead, aswe did in
this study, we examine each live cell and add 1 to the score of to all its neigh-
bors. Anindex!2 on column C of CELL islikely to help alot.

Its implementation is fairly easy and is left as an exercise.

27.16 The scripts

The algorithms and programs developed in this study are available as SQLfast
scripts in directory SQLfast/Scripts/Case-Studies/Case_Life_Game. Actually, they
can be run from main script LifeGame-MAIN.sql, that displays the selection box of
Figure 27.12, through which the user can choose to compile and run a new game or
to run a game previously compiled. We call compiling a game the transformation of
the specification of this game (such as through Script 27.3) into executable code,
that is, the corresponding SQLdraw file.

74 [User data entry] EI@

CONVVAY'S LIFE GAME - Compile and/or play a game.
- Compile and play a game (may take time)

Game: UpsideDown -
- Play a compiled game (immediate)

Game: A

0K Cancel

Figure 27.12 - Selecting a game to compile and run, or a script to run

12. In particularly a partial index that references live cells only (where C = 1).

Printed 28/11/20

23

The standard format of the scripts that create cellular automata (games of life) is
shown in Script 27.16. It includes the insert queries that create the initial state in

table CELL as well as the optimal settings of the following parameters:
— Lnbr: number of rows of the world shown in the graphical window

— Cnbr: number of columns of the world shown in the graphical window

— Niter: number of states to compute

— Delay: wait time between each state when the automaton is animated.

set Lnbr =

set Cnbr

15;
15;

set Niter = 40;
set Delay =

update
update
update
update
update

Script 27.16 - Creation of the standard Glider (script Create-LIFEGAME-Glider.sql)

CELL
CELL
CELL
CELL
CELL

150;

set
set
set
set
set

NNNNAN

1 where I = 1 and J =
1 where I = 2 and J =
1 where I = 3 and J =
1 where I = 3 and J =
1 where I = 3 and J =

W NRE WN

If the setting statements are missing or incomplete, a new data entry box opens,

letting the user set the parameters at its preferred values (Figure 27.13).

Figure 27.13 - Completing the parameters of the selected game

74 [User data entry] EI@

LIFE GAME simulation parameters
Lines: 16

Columns: 16

Iterations: 40

Delay (ms): 150

0K Cancel

These scripts are provided without warranty of any kind. Their sole objectives are to
concretely illustrate the concepts of the case study and to help the readers master

these concepts, notably in order to develop their own applications.

Printed 28/11/20

24

Case study 27 < Conway’s Game of Life

Printed 28/11/20

