
Case study 15 15

Directory management

Objective: The contents of storage media, such as hard disks and flash
disks, both internal and external, are organized into a hierarchical struc-
ture made up of directories and files.
This chapter shows that, when such structures are stored in a database,
processes can be designed easily to examine directories, to analyze
their contents, to describe their evolution and to discover potential
problems. In particular, small applications will be developed to extract
statistics, to display the structure and contents of a directory, do identify
and describe potentially duplicate files and directories within a root
directory or between two directories.
The problem of fast clone detection, that is, of set of files that have
exactly the same contents, is also analyzed and solved.
Keywords: directory structure, tree modeling, tree analysis, statistics,
tree evolution, duplicate files, clone detection, secure hashing,
SHA256, database performance, CTE, recursive queries

2 Case study 15 • Directory management

Printed 28/11/20

15.1 Of files and directories

In this chapter, we will deal with the way the contents of storage media (internal/
external disks and Flash memory for example) are organized. Each of these media
provides a space in which files of any kind are permanently stored. When their
number are getting larger, we find it convenient to collect these files in directories
according to some logical rules. A directory generally contains files but may also
contain directories (of which the former is the parent), that, in turn, may contain
other files and directories. The storage medium can be seen as a special directory.

Directory or folder?
Directories, the kind of container we just discussed about may also be called
folders. Actually, Unix and Unix-like taxonomies favor the abstract term direc-
tory (as well as MS-DOS) while Windows and Mac OS have long introduced
the more practical term folder. In this chapter, the terms folder and directory will
be used interchangeably.1

Seen as a whole, the contents of a directory is structured as a tree, of which the latter
is the root. Each node is either a directory or a file. Each edge represents the inclu-
sion relation between a directory and each of its children node. The root of the tree
is always a directory and its leaves are either files or empty directories.

Figure 15.1 shows a typical aspect of the standard file explorer of MS Windows.
File DIRECTORY.sql is selected in folder Chapter-48. This folder is located in parent
folder SQLfast-Tutorials, itself contained in folder Scripts of parent folder SQLfast-
std, at the root of internal disk D:/. The graphical representation of the left panel
shows clearly the tree structure of the directories.

Character string 'DIRECTORY.sql' is the local name of this file, that is, its name
within its immediate parent folder. Its full name also comprises the names of all its
direct and indirect parents:

D:/SQLfast-std/Scripts/SQLfast-Tutorials/Chapter-48/DIRECTORY.sql

Files have some interesting properties, such as their extension, their size, the time
they were last updated or last accessed.

15.2 Examining directories

Directories surely are a convenient and intuitive way to organize the many files we
store on our disk. However, after a while, they also become a real headache when the
number and the variety of these files are getting unmanageable. Files are modified,
their successive versions are kept, sometimes saved in more than one copy, quite
often scattered across one or several disks. Directories and files are not always

1. https://msdn.microsoft.com/en-us/library/bb513869.aspx

3

Printed 28/11/20

named in a pertinent way, so that these names may give little hints about their
contents.

Hence the need to better control the collection of our files distributed among the
internal hard disk(s) and all these external hard disks and USB flash keys. In partic-
ular, displaying and analyzing their contents is the first task, for which we will
develop some useful but simple tools.

Since we are going to examine and query trees, we could just reuse the scripts we
created for the Kings of France application (Chapters 35 and 36). However, direc-
tory trees have quite different properties and suggest specific processes, that make it
worth to develop a new approach.

Figure 15.1 - Screen shot of Windows explorer

15.3 Modeling the problem

We intend to store in a database the description of the nodes of a directory in order to
query it in various ways. However, further examination of the problem shows that
some of its aspects may be more complex than thought at first glance. In particular,

4 Case study 15 • Directory management

Printed 28/11/20

1. considered statically, a directory may contain duplicate files (and directories)
2. directories generally evolve in time: files are updated, deleted, created, re-

named, moved from one place to another one and duplicated
3. file duplication also appears among several directories, particularly if we cre-

ate backup versions on different devices.

Addressing these spatial and temporal aspects of directories leads us to identify
three main concepts:

1. Directory: a directory is uniquely identified by its name throughout all the de-
vices we intend to manage. This concept is time independent: directory D:/
SQLfast on our internal hard disk has been created several years ago and still
exists, though with different contents. To distinguish these directories from
those found in their composition, we call them root directories.

2. Instance of directory: the state of a root directory at a definite point in time (a
date-time); in other words, a snapshot of a directory. All the instances of a di-
rectory have distinct date-time.

3. Node: the state of an element, either a directory or a file, in an instance of a
directory. A node belongs to one instance. Therefore, a file that has been cap-
tured in two instances is represented by two different nodes. Deciding whether
two nodes describe the same file must be done based on their properties (name,
size, last update time) and position in the tree of their instances.

Let us illustrate and refine these concepts with an example.
We want to describe two root directories: SQLfast and SQLfast-std, located at the

root of partition D of our internal hard disk. We decide to name them Local-D:/
SQLfast and Local-D:/SQLfast-std. Why not just D:/SQLfast? Because this name alone
may prove ambiguous if, later, we decide to record the contents of another computer
in which a directory named D:/SQLfast also exists. So, we distinguish the real
system name of a root directory (D:/SQLfast) from its nickname we assign to it to
resolve potential name ambiguities (Local-D:/SQLfast). Nicknames are unique in the
scope we define while system name are may not be.

We record the state of SQLfast-std on January 6th (twice), 9th and 10th, therefore
creating four instances of it. Same for SQLfast, to which three instances are
associated.

For each instance, we record (the description of) all the directories and files that
composed its root directory at the time the instance was captured. These directories
(root included) and files constitute the nodes of this instance. Two successive
instances of a directory are likely to have a different composition.

5

Printed 28/11/20

15.4 Data structures

The implementation of these three concepts is straightforward. Root directories are
recorded in table DIRECTORY, their instances are recorded in table INSTANCE and
their components in table NODE. In each table, the rows are assigned a unique arbi-
trary number.

Table DIRECTORY records the system name (as their full path) of root directories
(DirName), their unique nicknames (DirNick) and assigns them a technical primary
key (DirID).

Table INSTANCE records all the instances of each root directory (column DirID) at
a time point (InstDate and InstTime, in ISO format), down to the second. Each
instance also is assigned a technical primary key (InstID).

Table NODE records the description of all the components of each instance
(column InstID). A component is either a directory (NType = ’D’) or a file (NType =
’F’). The root directory is itself a component of all its instances. Each node is
assigned a unique Id (NodeID).

Each node has a parent node (ParentID), which is the directory node in which it is
located, except root directories, which have no parent (this is their distinctive
property).

A node has a full name (FullName), that is, the unique path starting from the
device to its local name. The local name of a node (LocalName) is its name within its
immediate parent directory. The prefix of a node (Prefix) is the full name of its
immediate parent directory. Local name and prefix derive from the decomposition
the full name (FullName).

Four properties are specific to file nodes:
– their extension, derived from their local name (Extension)
– their size, in Bytes (Size)
– the last time they were updated (LastUpdate)
– the last time they were accessed without modification (LastAccess)

Two derived properties synthesize the overall structure of instances:
– the level of a node within its instance tree (Level); root directory nodes are

assigned level 0 and the level of a node is that of its parent + 1
– the suite of nodes from the root directory to each node, those included (Path)

Column Hash, that will be useful to identify clone files, will be explained later.
These data structures are translated in SQL-DDL in Script 15.1.

Figures 15.2 and 15.3 show excerpts of the data that represent the example described
above.

– Table DIRECTORY stores (the description of) root directories D:/SQLfast (nick-
name Local-D:/SQLfast) and D:/SQLfast-std (nickname Local-D:/SQLfast-std).

6 Case study 15 • Directory management

Printed 28/11/20

– Table INSTANCE stores three instances of Local-D:/SQLfast and four instances
of Local-D:/SQLfast-std.

– The contents of table NODE is fairly large, so that one node only is shown in a
showData box (Figure 15.3).

Script 15.1 - The tables of database DIRECTORY.db

This node describes a file (NType = F) named DIRECTORY.sql (LocalName),
located in directory D:/SQLfast-std/Scripts/SQLfast-Tutorials/Chapter-48 (Prefix).
Its node Id (NodeID) is 15813 and it belongs to instance 8 of root directory
D:SQLfast (ParentID).
It is at level 4 from its root directory (column Level) and it can be reached
(column Path) from the root directory node (NodeID = 14400) by following
intermediate nodes 14897, 15163 and 15801. The prefix letter, D or F, is a
reminder of the nature of the node. Column Hash is not shown.

create table DIRECTORY(
 DirID integer not null primary key autoincrement,
 DirName varchar(1024) not null),
 DirNick varchar(1024) not null unique);

create table INSTANCE(
 InstID integer not null primary key autoincrement,
 DirID integer not null
 references DIRECTORY on delete cascade,
 InstDate date not null,
 InstTime time not null,
 unique (DirID,InstDate,InstTime));

create table NODE(
 NodeID integer not null primary key autoincrement,
 InstID integer not null
 references INSTANCE on delete cascade,
 NType char(1) not null,
 ParentID integer
 references NODE on delete set null,
 FullName varchar(2048),
 Prefix varchar(2048),
 LocalName varchar(256),
 Extension varchar(32),
 Size integer,
 LastUpdate char(19),
 LastAccess char(19),
 Path varchar(2048),
 Level integer,
 Hash char(64);

7

Printed 28/11/20

Figure 15.2 - DIRECTORY and INSTANCE tables

Figure 15.3 - Composition of a node (here script file DIRECTORY.sql)

8 Case study 15 • Directory management

Printed 28/11/20

15.5 Loading a directory instance

Statement dirFileNamesAll-r is used to extract recursively (suffix -r) the
contents of a directory. Script fragment 15.2 lets the user select a root directory
(selectDirectory) and stores its content in file names.txt.

Script 15.2 - Selecting a root directory and recording its contents in file names.txt

Then, the user is invited to assign a nickname to the root directory, either by entering
a new name (the path of the directory just selected is suggested) in which case both
a new root directory and its first instance are created, or by selecting one among
those already recorded, in which case a new instance is created for this root directory
(Script 15.3).

Script 15.3 - Getting the nickname of the selected root directory

15.5.1 Creating a directory
If this root directory already exists, its Id (dirID) is extracted, otherwise, a new
DIRECTORY row is inserted (Script 15.4).

Script 15.4 - Creating a root directory if needed

15.5.2 Creating the current instance
Now, we have enough information to record the information on the current instance
in a row of table INSTANCE (Script 15.5). Variables dat and tim have preliminarily
been set to the current date and time.

set path = D:/;
selectDirectory path = $path$;
dirFileNamesAll-r $fileDirectory$/names.txt = $path$;

set rnn = $path$;
ask-u rnn = [/bSelect/Enter the nickname of the root directory]
 Root directory nickname:[select DirNick
 from DIRECTORY];

extract dirID = select DirID from DIRECTORY
 where DirNick = '§rnn§';
if ('$SQLdiag$' = 'NONE');
 insert into DIRECTORY(DirName,DirNick)
 values ('§path§','§rnn§');
 extract dirID = select DirID from DIRECTORY
 where DirNick = '§rnn§';
endif;

9

Printed 28/11/20

Script 15.5 - Creating an instance of the root directory

15.5.3 Creating the nodes of the current instance
The next step is to store the nodes of this instance (Script 15.6). Their names are
extracted from file names.txt. Each line is decomposed by function splitPath of
library LFile. It returns five values: the full name, the prefix, the local name for a
directory (empty for a file), the local name for a file (empty for a directory) and the
extension (empty for a directory).

For files, additional informations on size, last update time and last access times
are collected through function infoFile of library LFile.

Script 15.6 - Creating the nodes of the current instance of the root directory

Filling column ParentID is straightforward: the full name of the parent of a node is
the prefix of this node in the same instance. Hence the update query of Script 15.7.

The level of a node could be computed by a recursive query, but it is more simply
derived from the number of symbol '/' in its full name, relative to that of its root
directory (Script 15.7, last part).

insert into INSTANCE(DirID,InstDate,InstTime)
 values ($dirID$,'dat','tim');
extract instID = select InstID from INSTANCE
 where DirID = $dirID$
 and InstDate = 'dat'
 and InstTime = 'tim';

for line = [file $namesFile$];
 function ful,pre,dir,fil,ext = LFile:splitPath {$line$};
 if ('§fil§' = '');
 insert into NODE(InstID,NType,FullName,Prefix,LocalName)
 values($instID$,'D','§ful§','§pre§','§dir§');
 else;
 function siz,cre,upd,acc = LFile:infoFile {$line$};
 insert into NODE(InstID,NType,FullName,Prefix,LocalName,
 Extension,Size,LastUpdate,LastAccess)
 values($instID$,'F','§ful§','§pre§','§fil§',
 '§ext§',siz,'upd','acc');
 endif;
endfor;

10 Case study 15 • Directory management

Printed 28/11/20

Script 15.7 - Computing the values of columns ParentID and Level

15.5.4 Computing the path of a node
The value of column Path of a node is the list of node Id’s from the root directory
(included) to this node (included). Computing paths in graphs in general, and in trees
in particular, is a nice application of recursive queries also known as recursive CTE
in SQL (see Chapter 36 for example).

In Script 15.8, CTE TREE extracts couples (ParentID, NodeID) from NODE and
recursively computes the path of a node (starting from the root directory) from that
of its parent, to which it appends its own node Id.

Script 15.8 - Computing node paths - Recursive version

The way node id’s are formatted in the path is a bit raw. For example, the sequence
<937,1038,11847,32> will be expressed as

'937 1038 11847 32'

which is not particularly elegant and, more important, will not serve the depth-first
ordering role we intend to assign to it (see below). So, we suggest to replace expres-
sion

cast(NodeID as char)

update NODE
set ParentID = (select NodeID from NODE
 where FullName = NODE.Prefix
 and InstID = $instID$)
where InstID = $instID$;

compute NL = countInst('§path§','/');
update NODE set Level = countInst(FullName,'/') - NL
where InstID = $instID$;

with TREE(FromID,ToID,Path) as (
 select ParentID,NodeID,cast(NodeID as char)
 from NODE where ParentID is null
 union all
 select T.ToID,N.NodeID,T.Path||' '||cast(N.NodeID as char)
 from TREE T, NODE N
 where T.ToID = N.ParentID
)
update NODE
set Path = (select Path from TREE where ToID = NODE.NodeID);

11

Printed 28/11/20

by2

NType||frame(NodeID,nd,'>','0')

which obviously deserves some explanation!
Function frame(s,nd,a,p) returns string s framed in a nd-long string; a is the

alignment ('<' = left, '>' = right, '^' = center) of s in the frame; unused positions are
padded with characters p. The value of nd is computed as the number of digits of
the largest node Id:

extract nd = select length(cast(max(NodeID) as char))
 from NODE;

In addition, each node Id is prefixed with the nature of the node (D or F). The result
becomes quite regular:

'D00937 D01038 D11847 F00032'

This algorithm can also be translated into an iterative script. Its logic is quite similar
to that of the recursive version:

– first, the path of the root node is set to its own node Id,
– then, each iteration computes the path of the children of each node of the

preceding level, until all levels have been processed (Script 15.9).

Script 15.9 - Computing node paths - Iterative version

Note that, for simplicity, both algorithms have been designed for a table NODE that
stores one directory instance only. The fully functional scripts must restrict the
processing to the current instance, that is, to those NODE rows that satisfy condition

where InstID = $instID$

2. Function frame transforms numeric values into character strings, so that casting them into
char type is unnecessary.

extract maxLevel = select max(Level) from NODE;

update NODE set Path = cast(NodeID as char)
where Level = 0;

for iLev = [1,$maxLevel$];
 update NODE
 set Path = (select Path from NODE
 where NodeID = NODE.ParentID)
 ||' '||cast(NodeID as char)
 where Level = $iLev$;
endfor;

12 Case study 15 • Directory management

Printed 28/11/20

15.6 Applications

The value of a database lies in the quality of the data but also on the problem solving
application portfolio. We will develop some simple applications that focus on the
analysis of a collection of directories in order to understand its structure and its
contents on one hand, and to search them for potential duplicates on the other hand,
a frequent problem of people who use computers for several years!

The applications described below just are suggestions that are intended to be
adapted and completed to meet specific readers needs.

15.7 Application 1: general statistics

Some global statistics will give us a general picture on our directories (Script 15.10).
Script 15.11 provides more detailed statistics on the instances of each root directory,
notably providing the time range of these instances.

Script 15.10 - Displaying the size of the tables

Script 15.11 - Statistics for each root directory

Excerpts of the result are shown in Figure 15.4, top two tables. This screen shot also
shows the hierarchical instance description produced by Script 15.12. For each
directory and for each of its instances, it provides the instance time, the number of
directories, the number of files, the total file size and the most recent file update
time.

select
 (select count(*) from DIRECTORY) as "Root directories",
 (select count(*) from INSTANCE) as Instances,
 (select count(*) from NODE) as Nodes,
 (select count(*) from NODE where NType = 'D') as Directories
 (select count(*) from NODE where NType = 'F') as Files;

select D.DirNick as "Root directory",
 count(*) as Instances,
 min(InstDate||' '||InstTime) as "First recording",
 max(InstDate||' '||InstTime) as "Last recording"
from DIRECTORY D, INSTANCE I
where D.DirID = I.DirID
group by D.DirID;

13

Printed 28/11/20

Figure 15.4 - General statistics

This script is a bit more complex than the queries developed so far. It comprises
three main parts:

1. the from clause builds the union of two results sets, one producing the identi-
fication of root directories and the second one the description of instances.
Since they must comprise the same number of columns, those of them that are
not significant are left empty (string '').

2. the order by clause creates the hierarchical sequence that presents each di-
rectory immediately followed by its instances. To do so, we define special
computed column sort. Its values are that of DirID in both tables, so that all
DIRECTORY and INSTANCE rows are grouped, followed by a character that
forces the DIRECTORY row to precede its INSTANCE rows: we naturally have
chosen 'D' for DIRECTORY and 'I' for INSTANCE.

3. the select clause formats the values from the combined result sets and as-
signs them expressive names. Function thousandSep(n,sep) returns the
character string formed by number n, in which character sep separates groups
of three digits in the integral part of n. E.g., thousand-
Sep(1234567.45,',') returns '1,234,567.45'.

14 Case study 15 • Directory management

Printed 28/11/20

Script 15.12 - Displaying the directory/instance hierarchy

15.8 Selecting a directory instance

All the following applications will carry out an analysis of a definite directory
instance (or two instances for some of them). In order to alleviate the code of these
applications, we could create specific scripts to select this instance and to get the
nickname of the directory. We could also use a lighter technique: storing common
patterns as code fragments in SQLfast variable. These patterns are shown in Script
15.13. Selecting an instance is now easy:

ask inst = Instance:[!$listInstances$];

and extracting the directory name of instance $inst$ is quite straightforward as
well:

extract iName = $instName$;

select DirNick as "Root directory",
 Time as "Instance time",
 frame(Folders,7,'>',' ') as Directories,
 frame(Files,7,'>',' ') as " Files",
 frame(thousandSep(Size,' '),15,'>',' ') as "Total size",
 Last as "Last updated"
from
 (select DirNick,'' as Time,
 '' as Folders, '' as Files,'' as Size,
 '' as Last, cast(DirID as char)||'D' as Sort
 from DIRECTORY D
 union
 select '' as DirNick,InstDate||' '||InstTime as Time,
 (select count(*) from NODE N where NType = 'D'
 and N.InstID = I.InstID) as Folders,
 (select count(*) from NODE N
 where NType = 'F' and N.InstID = I.InstID) as Files,
 (select case NType when 'F' then sum(Size) else ''
 end from NODE N
 where N.InstID = I.InstID) as Size,
 (select max(LastUpdate) from NODE N
 where NType = 'F' and N.InstID = I.InstID) as Last,
 cast(DirID as char)||'I' as Sort
 from INSTANCE I)
order by Sort;

15

Printed 28/11/20

Script 15.13 - Two useful common patterns to select instances

15.9 Application 2: Structure of a directory instance

We call structure of an instance the list of internal directories that shows, through
indentation, the inclusion relationships. It represents graphically the tree structure of
these directories (Figure 15.5).

Script 48.14 that produces this structure is straightforward. The generation of the
sequences of dots that create the indentation is based on column Level of table
NODE (function repeat(s,n)returns a character string formed by n time string s).
To make directory names distinguishable from those of files3, the former are
surrounded by square brackets.

Script 15.14 - Displaying the directory structure of an instance

set listInstances
 = select D.DirNick||' ('||I.InstDate
 ||' '||I.InstTime||')' as Name,
 I.InstID
 from DIRECTORY D,INSTANCE I
 where D.DirID = I.DirID
 order by Name;

set instName
 = select DirNick||' ('||InstDate||' '||InstTime||')'
 from DIRECTORY D, INSTANCE I
 where InstID = $inst$ and D.DirID = I.DirID;

3. Not particularly striking in this case, but will be useful in the next report!

ask inst = Instance:[!$listInstances$];

extract iName = $instName$;
write-ab -- Directory structure of directory "$iName$" --;

select NodeID,
 repeat('.... ',Level)
 ||case when NType = 'F'
 then LocalName
 else '['||LocalName||']'
 end as Name
from NODE
where InstID = $inst$ and NType = 'D'
order by Path;

16 Case study 15 • Directory management

Printed 28/11/20

Figure 15.5 - Structure of directory SQLfast-std (excerpts)

The correct tree structure of the report is defined by the order by clause, that imple-
ments, through the values of column Path, the depth-first traversal order of the node
tree, according to which the children of a node N are visited before visiting the next
sibling of N and its children.

15.10 Application 3: Examining the contents of an instance

This application is an extension of the previous one. The file and directory local
names are presented with the same indentation technique while an additional
column indicates the prefix of each node.

The contents of the directory can be limited to nodes of a certain type: directories
only, files only, both (as in the previous report) or files with a definite extension.
Figure 15.6 shows a report on *.sql scripts of the instance selected (Figure 15.7).

17

Printed 28/11/20

Figure 15.6 - List of all the sql scripts of the instance selected

This report has been produced by Script 15.16, that comprises four main parts:
1. the dialogue box (Figure 15.7)
2. the sequence of if ('ext'...) statements that translate the node type into

an SQL condition stored in variable extCond

3. extracting the name of the instance and writing the report title
4. the SQL query that produces the report itself.

To make the script simpler, we define pattern listTypes, that creates the list of the
types of the file nodes in table NODE (Script 15.15).

15.11 Application 4: Duplicate nodes in a directory instance

Finding nodes that denote identical files in a root directory is one of the most impor-
tant problem when managing a large collection of files. We first address the search
of potentially duplicate files and directories in a root directory.

18 Case study 15 • Directory management

Printed 28/11/20

Figure 15.7 - Selecting the type of contents to display

Script 15.15 - Pattern that extracts the types of all the files recorded in table NODE

15.11.1 List of duplicate nodes in a directory instance
Through this small application, we want to know which nodes have the same name
in a selected root directory. This indicator is not sufficient to declare them identical,
but it is good starting point to evaluate redundancies in a directory.

Script 15.17 asks the user to select a directory and to specify the minimum multi-
plicity for which duplicate names must be reported.

Figure 15.8 shows excerpts of the result of its execution for directory Local-D:/
SQLfast for a multiplicity of 2. This report is just a short summary of the duplication
phenomenon, but it is worth being examined to decide whether a more in-depth
analysis may be useful. The latter is the objective of the next section

set listTypes
 = select 'all files,all folders,...,'
 ||group_concat('*.'||Extension)
 from (select distinct lower(Extension) as Extension
 from NODE
 where Extension <> ''
 order by lower(Extension));

19

Printed 28/11/20

Script 15.16 - Displaying the contents of a directory

Script 15.17 - Identifying duplicate files and directories

ask inst,ext = Instance:[!$listInstances$]
 |Type:[!$listTypes$];

if ('ext' = '') set ext = - all files and directories;

set extCond = ;
if ('ext' = 'all files and folders')
 set extCond = ;
if ('ext' = 'all files')
 set extCond = and NType = 'F';
if ('ext' = 'all directories')
 set extCond = and NType = 'D';
if (startswith('ext','*.'))
 set extCond = and Extension = substr('§ext§',3,99);

extract iName = $instName$;
write-ab -- Contents (ext) of Directory instance "$iName$";

select NodeID as Node,
 repeat('.... ',Level)
 ||case when NType = 'F'
 then LocalName
 else '['||LocalName||']'
 end as Name,
 Prefix as Source
from NODE
where InstID = $inst$ $extCond$
order by Path;

set inst = ;
set mul = 2;
ask-u inst,mul = Instance:[!$instName$] | Min multiplicity:;
if ('$DIALOGbutton$' = 'Cancel' or '$inst$' = '') goto EXIT;

extract iName = $instName$;
write-ab Duplicates in Directory instance "$iName$";

select case when NType = 'F'
 then LocalName
 else '['||LocalName||']'
 end as Nodes,
 count(*) as Nbr
from NODE where InstID = $inst$
group by Nodes
having Nbr >= mul
order by Nbr desc, Nodes;

20 Case study 15 • Directory management

Printed 28/11/20

Figure 15.8 - Duplicate nodes in a root directory instance (excerpts)

15.11.2 Description of duplicate nodes in a directory instance
This application extends the previous report by organizing duplicate nodes in a tree
structure and by adding size and update time information to better compare poten-
tially duplicate files (Figure 15.9).

We give the report a hierarchical structure in which, for each local name that
appears more than once, we list the full names of the directories in which they are
located, together with additional properties size and last update time.

The SQLfast code is given in Script 15.18. As usual, the hierarchy is created by the
union of the rows providing the two kinds of lines in the result set: the common local
names and the parent directories of these names.

The correct depth-first order is defined by the sort key Sort built by the common
local name suffixed with letters 'A' and 'B' respectively.

21

Printed 28/11/20

Figure 15.9 - Detailed report of potentially duplicate files

15.12 Application 5: Comparing two directory instances

This application compares the contents of two directory instances by identifying the
components of the first one that are absent from the second one, and conversely.

This comparison particularly makes sense when the instances have similar struc-
tures, for example when we examine the evolution of two instances of the same
directory or when we compare two backup external disks that are supposed to be
identical.

Nodes are compared on their name and their type, but a more strict comparison
can be chosen, that adds the size and last update time properties to the operands. In
addition, the comparison can be limited to two subdirectories of the selected
instances. This is shown in the parameter selection box of Figure 15.10.

22 Case study 15 • Directory management

Printed 28/11/20

Script 15.18 - Generating the hierarchical report of Figure 15.9

To clarify the algorithms, we decide to work on two temporary tables, NODE1 and
NODE2, in which we store the sets of nodes to compare in both instances. The
comparison can then be translated into the set theoretic difference of these tables
(SQL operator except).

The fragment of Script 15.19 displays the local name nodes of NODE1 that are
absent from NODE2, based on their values of FullName and NType.

set inst = ;
set mul = 2;
ask-u inst,mul = Instance:[!$instName$] | Min multiplicity:;
if ('$DIALOGbutton$' = 'Cancel' or '$inst$' = '') goto EXIT;

select
 "Node name" as "This node",
 Source as "appears in ...",
 Size,
 LastUpdate as "Last update"
from
 (select distinct
 case when NType = 'F'
 then LocalName
 else '['||LocalName||']'
 end as "Node name",
 '' as Source,
 '' as Size,
 '' as LastUpdate,
 LocalName||'A' as Sort
 from NODE
 where InstID = $inst$
 and LocalName in (select LocalName from NODE
 where InstID = $inst$
 group by LocalName
 having count(*) >= mul)
 union
 select
 '' as "Node name",
 Prefix as Source,
 frame(thousandSep(Size,' '),13,'>',' ') as "Size",
 LastUpdate,
 LocalName||'B' as Sort
 from NODE
 where InstID = $inst$
 and LocalName in (select LocalName from NODE
 where InstID = $inst$
 group by LocalName
 having count(*) >= mul)
)
order by Sort;

23

Printed 28/11/20

Figure 15.10 - Comparing two directory instances

Expression case-end performs a pretty formatting of the node names according to
their type. Variables dir1 and dir2 contains the full names of the directories to
compare.

Script 15.19 - Displaying the nodes in NODE1 but not in NODE2

15.13 Application 6: Searching for clone files

So far, the concept of duplicate has been based on external properties of two files:
same local name, same size and same last update time. This approach is far from
reliable in practice since it may lead to two kinds of errors:

– false positive: two files happen to have the same external properties, though
their contents are quite different

– false negative: two files have different names and last update time while their
contents are identical.

select NType as "Type",
 case when NType = 'F'
 then ' '||Name
 else '['||Name||']'
 end as "In Directory (1) but not in Directory (2)"
from (select replace(FullName,'§dir1§/','') as Name,NType
 from NODE1
 except
 select replace(FullName,'§dir2§/','') as Name,NType
 from NODE2);

24 Case study 15 • Directory management

Printed 28/11/20

15.13.1 The problem
To go beyond the mere comparison of external properties, we have to carry out a
more in-depth examination of the files to identify those of them that are real clones,
that is, that have the same contents. Let us adopt the following reasoning:

1. clones may have different local names (ORDERS.db and ORDERS-old.db) and
different extension (ORDERS.db, ORDERS.back); so, comparing names and
extensions may help detecting some clones but surely not in all cases

2. clones should have the same last update time but copying or downloading a
file may change the update time of the copy

3. clones have the same size
4. clones have the same contents, compared byte by byte.

If we agree on these rules, then only the last two ones should be used to detect
clones. If checking whether two files have the same size is fairly easy, the same
contents rule is likely to be harder to implement, specially for large files (small file
can be preloaded in RAM).

Considering S = {f1, f2, ..., fn-1, fn} a set of n candidate files. A procedure that
compares two files at a time by reading them in parallel, has a best case cost of 2(n-
1) sequential readings if the files are real clones. Indeed, we have to compare the
following pairs: (f1, f2), (f2, f3), ..., (fn-2, fn-1), (fn-1, fn); f1 and fn are read once, all the
others twice. On the contrary, if the files of S are not clones, each pair of files must
be evaluated, that is, n(n-1) file comparisons. Each of them requires two sequential
readings, for a total cost of 2n(n-1) sequential readings. However, these readings
will be partial, since they will stop once a pair of different bytes have been read. If,
on the average, these bytes are encountered in the middle of the files, then the esti-
mated total cost will be n(n-1) full sequential readings.

If a new file is added and is reported in a further instance, we will have to carry
out the comparison process again. To save expensive file processing, we could think
of a way to record the comparison result. This would require a new table
CLONE_SET in which each row denotes a set of clones already evaluated and
dependent table CLONE_MEMBER each row of which references a NODE row
member of this set. When a set of clones has been identified, it is recorded in these
tables. This way, introducing a new file will entail less effort, since it must be
compared with one member of each clone set.

To be honest, all this seems both very expensive and complicated.

15.13.2 Saved by (computer) science
Fortunately, computer science (and SQLfast as well!) provides us with a nice tech-
nique to compare the contents of files of any size: hash functions, and more particu-
larly, secure hash functions.

This technique has been described in Section 15.7.3 (Secure hashing). It consists
in deriving from a byte string B, here the contents of a file, another, short, fixed

25

Printed 28/11/20

length, character string (the hash value) that can be used as a fingerprint or signa-
ture of B. With good hash functions, the probability of two different byte strings
producing the same signature is extremely low. Therefore, we are allowed to
consider that the hash value of a file (reasonably) identifies it among all the files,
past, present and future, we intend to manage. SQLfast hashFile function and
statement return, for any file, whatever its type and its length, a hash value
consisting of a string of 256 bits converted into a string of 64 hexadecimal
characters.

Now, the problem of searching for clones can be solved quite simply. We
compute the hash value of each candidate file and we store it along with the other
properties of these files. Clones are files with the same hash value.

15.13.3 Hashing files
First, we add a new column to table NODE4:

alter table NODE add column Hash char(64);

and we fill it for all the rows in instance inst:

update NODE set Hash = hashFile(FullName)
where InstID = $inst$ and NType = 'F';

Function hashFile returns the hash value of the file denoted by its argument.
However, it returns null5 if this argument does not refer to an existing file (e.g., a
directory, a link or a missing file).

An alternative iterative version, based on hashFile statement, is proposed in
Script 15.21.

Performance
The hash functions and statement of SQLfast are based on SHA256, one of the
best algorithms to generate near collision6 free hash value distribution. What
about its performance? Each call reads the sequence of bytes of a file and
applies to them complex binary computation. On a standard, average, machine
(laptop, i7, 7200 rpm HD), a directory instance of 2,700 files totalling 850 MB is
processed in 8.5 s. So, the reading-computation speed is of 100 MB/s. Not bad,
considering that this operation has to be performed only once per instance. Not
surprisingly, the iterative version is a slower: 21.5 s. instead of 8.5 s.

4. Actually, it has already been defined in table NODE.
5. Constant None in Python, interpreted as null in SQLite. SQLfast statement hashFile
returns an empty string instead of None.
6. collision: undesirable event of two different source files generating the same hash value, which
could lead to false positive.

26 Case study 15 • Directory management

Printed 28/11/20

Script 15.20 - Updating column Hash of table NODE: pure SQL version

Script 15.21 - Updating column Hash of table NODE: iterative version

15.13.4 Identifying clone candidates in a directory instance
Basically, exploring directory instances to find clones is quite similar to the proce-
dures based on local names, as we did so far, where we substitutes Hash for Local-
Name.

Let us first define cloneHash, an SQL pattern that denotes the set of Hash values
that exist more than once in instance inst (Script 15.23, top). Condition Hash is
not null copes with missing files and condition Size > 0 discards empty files.

Extracting the list of clone files is now straightforward (Script 15.22).

Script 15.22 - List of clone files in instance inst (raw version)

Since the values of Hash are a bit long, we display excerpts of them:

substr(Hash,1,8)||'...'||substr(Hash,56,8) as "Hash"

We define pattern hashDigest with this expression to make queries more readable
(Script 15.23, bottom).

update NODE set Hash = hashFile(FullName)
where InstID = $inst$ and NType = 'F';

for node,name = [select NodeID,FullName from NODE
 where InstID = $inst$ and NType = 'F'];
 hashFile hash = $name$;
 update NODE set Hash = case when '$hash$' = ''
 then null
 else '$hash$'
 end
 where NodeID = '$node$';
endfor;

select Hash,LocalName,Prefix
from NODE where Hash in ($cloneHash$)
order by Hash;

27

Printed 28/11/20

Script 15.23 - Two patterns: set of the Hash values of clones in instance inst and
condensed version of hash values

Following the sorting trick of Script 15.12, Script 15.24 produces the nice hierar-
chical report of Figure 15.11. The group name (alias Group) is meaningless, its only
role being to create a two-level hierarchy.

The structure of this query is fairly simple. The first subquery of the from clause
creates the heading of the clone groups. The second subquery creates one row per
clone file.

Script 15.24 - List of clone files in instance inst (hierarchical view)

15.13.5 Identifying clone candidates among two directory
instances

The problem seems quite similar to that of finding clones in a single instance. One
important distinction though: these instances should be of different directories.
Indeed, two instances of the same directory will most of the time exhibit little differ-
ences, so that most files will be clones!

The approach we suggest consists in finding clones in the union of two source
instances. This will work nicely provided (1) each instance has been cleaned from
its own clones, or at least if these clones have been reduced as far as possible and (2)
the instances have not too many common files. Otherwise a too large number of
files will be declared clones, making the report of little interest.

set cloneHash = select Hash from NODE
 where InstID = $inst$ and NType = 'F'
 and Hash is not null and Size > 0
 group by Hash having count(*) > 1;

set hashDigest = substr(Hash,1,8)||'...'||substr(Hash,56,8);

select Hash as Group,LocalName as Clone,Prefix as Source
from (select $hashDigest$ as Hash,
 '' as LocalName,'' as Prefix,Hash||'C' as Sort
 from ($cloneHash$)
 union
 select '' as Hash,
 LocalName,Prefix,Hash||'F' as Sort
 from NODE
 where Hash in ($cloneHash$) and InstID = $inst$
)
order by Sort;

28 Case study 15 • Directory management

Printed 28/11/20

To make the main query clearer, we first define pattern cloneHash2 that
computes the set of hash values common to both instances, denoted by variables
inst1 and inst2 (Script 15.25). These values are those of candidate clones.

The main query is shown in Script 15.26. It creates a hierarchical report in which
each set of clones coming from both instance are presented as a group. The main
difference with the report of Figure 15.11 is that the source directory of each clone
(its Prefix) is indexed with symbol <1> or <2> according to this source.

The query sorts three kinds of rows so that they appear in this order for each
group of clones:

1. the group id (the concise Hash value (sort key = Hash||'C0')
2. the clones from instance <1> (sort key = Hash||'F1')
3. the clones from instance <2> (sort key = Hash||'F2')

Figure 15.11 - Hierarchical view of the clone files of a directory instance

29

Printed 28/11/20

Script 15.25 - Pattern computing the set of the hash values common to instances
inst1 and inst2

Script 15.26 - Identifying clones between two directory instances

15.14 A touch of optimization

No indexes have been created yet, apart from those automatically associated with
primary keys (and unique keys, if any) by most RDBMSs.

Creating non unique indexes may accelerate some queries. However, deciding
which ones will really be useful is not an easy task. Indeed, the benefit of an index
depends on the size of the table, its selectivity (which measures the proportion of the
table that can be accessed through it), the frequency of the queries that will use it

set cloneHash2 = select Hash
 from (select Hash from NODE
 where InstID = $inst1$ and NType = 'F'
 and Hash is not null and Size > 0
 intersect
 select Hash from NODE
 where InstID = $inst2$ and NType = 'F'
 and Hash is not null and Size > 0);

select Hash as "Group",LocalName as Clone,Prefix as Source
from (select $hashDigest$ as "Hash",
 '' as LocalName,'' as Prefix,
 Hash||'C0' as Sort
 from NODE
 where Hash in ($cloneHash2$)
 union
 select '' as "Hash",
 LocalName,'<1>'||Prefix as Prefix,
 Hash||'F1' as Sort
 from NODE
 where Hash in ($cloneHash2$) and InstID = $inst1$
 union
 select '' as "Hash",
 LocalName,'<2>'||Prefix as Prefix,
 Hash||'F2' as Sort
 from NODE
 where Hash in ($cloneHash2$) and InstID = $inst2$
)
order by Sort;

30 Case study 15 • Directory management

Printed 28/11/20

and the cost of its updating. In addition, a missing index can be compensated by the
access strategy of the DBMS, which can decide to dynamically create an index on
the fly for the execution of a query.

Due to their small size, tables DIRECTORY and INSTANCE can be left without
additional indexes.

Concerning table NODE, additional indexes will generally be useless for a popu-
lation of a few thousands rows. Moreover, reducing execution time from 1 second to
100 milliseconds is of little interest when we want to produce, once in a while, a
report that will require one minute to analyze.

A common sense rule suggests to index foreign keys, as these indexes will
support such operations as joins with the parent table and delete/update in the parent
table. This is quite justified in this case since most queries operate on the nodes of a
definite instance. So, we create an index on InstID (Script 15.27). As to ParentID, we
observe that only Script 15.8, that computes Path, includes a condition is null on
this column. We suggest to discard this foreign key index.

An index on NType, though this column is mentioned in many conditions (Scripts
15.10, 15.12, 15.14, 15.16, 15.20, 15.21, 15.23 and 15.25), will be useless due to its
low selectivity (two values only). Same argument and conclusion for an index on
Level.

Several queries include where, order by or group by clauses on columns
Hash, Path, FullName, LocalName and Extension, all in combination with InstID.
Indexes on these columns may decrease the execution time of report generation
queries but not by far.7 Script 15.7, that computes ParentID values could make use
on an index on (InstID, FullName). However, this operation already is very fast
without such index.

Script 15.27 - We just need one additional index

A last argument to be conservative about index creation is that each index on NODE
entails a loading time penalty. So, the lesser, the best for this operation.

Of course, reporting on very large directory instances may change our
conclusion.

7. On the example shown in this chapter, most reporting queries require less than 1 second with
an index on InstID only.

create index ndxNodeInstID on NODE(InstID);

31

Printed 28/11/20

15.15 Building the DIRECTORY application

The functions developed above have been integrated into a global application. The
main program, called DIR-MAIN.sql, in directory Scripts/Case_Studies/
Cases_Directory_Manegement. Its structure is that of a simple loop that displays
the control panel of Figure 15.12 and executes the function selected.

Beside the analysis functions (right side column), some basic management func-
tions have been integrated (left side column):

• creating a new DIRECTORY.db database

• loading a new instance of an existing or a new root directory

• inserting the hash values of an instance

• deleting a root directory and all its instances

• deleting an instance of a root directory and all its nodes

• opening the help window

The latter function display a small tutorial document (DIRECTORY.tuto) that
describes the main functions of the application.

The mapping between the button checked and the script to execute is imple-
mented through item list modList, which is made up of the names of the scripts
separated by semi-colons. The number of the button checked by the user is returned
in variable op. This value is used to get the module name through expression

 itemS('$modList$',op)

that returns the opth item in list modList.8

The main script is shown in Script 15.28. Some comments on its main parts:
– [1]: sets the current script directory scriptPath

– [2]: loads the common patterns, collected in script DIRECTORY-Common-
Patterns.sql

– [3]: builds the module name list in modList

– [4]: sets the default operation
– [5]: main loop
– [6]: creates and displays the control panel; returns operation number op

– [7]: extracts the selected module name in variable module

– [8]: executes the selected module.

The main script also comprises ancillary operations that are not shown here.

8. Suffix S refers to the standard separator, which is the semi-colon.

32 Case study 15 • Directory management

Printed 28/11/20

Figure 15.12 - Control panel of the DIRECTORY application

These scripts are provided without warranty of any kind. Their sole objectives are to
concretely illustrate the concepts of the case study and to help the readers master
these concepts, notably in order to develop their own applications.

15.16 Suggestions

This chapter has shown that simple tree structures can provide much interesting
information on the contents of storage media. On the analysis side, a lot of other
reporting queries can be developed, such as the following:

– comparing two media, to check whether they have the same contents, despite
different structures

– comparing the structure of two instances
– identifying the files that have been renamed (comparing two successive

instances)
– computing the size of each directory
– synthesizing the activity of some files across successive instances (based on

varying update and access time); identifying dead (or archived) files.

On the other hand, directory structure modification can be developed, such as
copying, deleting and renaming files.

33

Printed 28/11/20

Script 15.28 - Main script of DIRECTORY application

set scriptPath = SQLfast-Tutorials/Chapter-48; [1]

execSQL $scriptPath$/DIRECTORY-Common-Patterns.sql; [2]

set modList = Create-or-Replace;Load-Instance; [3]
set modList = $modList$;Load-Hash;Delete-Directory;
...
set modList = $modList$;Select-Clone-Candidates-2; [3]

set op = 2; [4]

while (True); [5]
 selectOne-u op = [6]
 [/b @t@tDIRECTORY MANAGEMENT AND ANALYSIS]
 {Directory management}
 | Create or replace DIRECTORY database
 | Load a Directory instance
 | Load hash values of a Directory instance
 | Delete a Directory
 | Delete a Directory Instance
 | Help
 || {Directory analysis}
 | Statistics
 | Structure of a Directory instance (folders)
 | Contents of a Directory instance (folders and files)
 | List duplicates within a Directory instance
 | Describe duplicates within a Directory instance
 | Compare two Directory instances
 | Finding clones within one Directory instance
 | Finding clones within two Directory instance;

 if ('$DIALOGbutton$' = 'Cancel') exit;

 compute module = itemS('$modList$',op); [7]
 execSQL $scriptPath$/DIRECTORY-$module$.sql; [8]

endwhile; [5]

34 Case study 15 • Directory management

Printed 28/11/20

