
Case study 12 12

Kings of France - Part 2

Objective. In this chapter, we continue the exploitation of the KINGS
database through more advanced tree processing applications, based
notably on recursive scripts. The central concept from which most of
these applications will derive is the transitive closure of table BRANCH,
which comprises all direct and indirect ancestor/descendant couples.
From it, we will build queries that count the descendants of a member,
others that display the hierarchy of these descendants in various graph-
ical way and a transitive reduction query that recovers the contents of
table MEMBER from its closure. The last application, tree projection,
extracts from table MEMBER a subset in which only kings appear.
Keywords. genealogy, tree, cyclic data structure, transitive closure,
transitive reduction, tree projection, recursive CTE, recursive query,
tree drawing, tree traversal, depth-first traversal, breadth-first traversal,
SQLdraw.

12.1 The ancestor/descendant relationships

We will first build a very simple data set that tells us who is a descendant of whom.
We know from the base data that ROBERT II is a descendant of HUGUES CAPET
(actually his son) and that HENRI I is a descendant of ROBERT II. It is up to us to
infer that HENRI I is a descendant of HUGUES CAPET (actually his grandson). We

2 Case study 12 • Kings of France - Part 2

Printed 5/6/23

can go on by identifying all the descendants of HUGUES CAPET, then those of
ROBERT II, and so on (Figure 12.1).

The full set of these ancestor/descendant relationships is called the transitive
closure of table MEMBER. More precisely, we should call it the transitive closure of
the set of (Father,PiD) couples extracted from MEMBER table1. Drawing a transitive
closure may prove particularly painful, even for a small initial set of couples. For
instance, that of MEMBER comprises 850 couples!

Figure 12.1 - Transitive closure: who is a descendant of whom?

+----------+------------+
| Ancestor | Descendant |
+----------+------------+
B00	B01
B00	B02
...	...
C00	C01
C00	C02
C00	C03
C00	C04
...	...
C01	C02
C01	C03
C01	C04
...	...
C02	C03
C02	C04
...	...
V14	V17
+----------+------------+

Figure 12.2 - The transitive closure of table MEMBER (excerpts)

1. In graph theory, the transitive closure T of a binary relation B (that is, a set of couples) is the
set defined as follows:(1) it comprises all the couples of B, (2) if couples (a,b) and (b,c) are in T,
then couple (a,c) also is in T.

C00 HUGHES CAPET

C01 ROBERT II

C02 HENRI I

C03 PHILIPPE I

C04 LOUIS VI

3

Printed 5/6/23

It would be nice to automatically generate all these ancestor/descendant relation-
ships from the base data recorded in table MEMBER. The result would look like the
data table of Figure 12.2.

This is a good job for a recursive query, or, more precisely, a recursive CTE. In
Script 12.1, CTE PATHS is defined by two queries:

1. the initialization query, that stores the couples (Father,PiD) of the members,
except of those who have no father:

select Father,PiD from MEMBER where Father is not null

2. the recursive query, that adds to the CTE an additional subset, defined by
joining the current contents of the CTE with the (Father,PiD) couples from ta-
ble MEMBER:

select P.Ancestor, M.PiD
from PATHS P,MEMBER M
where P.Descendant = M.Father

To make the query easy to read, we have stored the definition of the CTE in variable
Closure. The main query of the CTE prints all the couples of the closure.

Script 12.1 - Generating the closure of table MEMBER

Despite its simplicity, the closure is a powerful concept that can be used to solve in
a simple way a great variety of problems.

Before going on, we will refine it a little bit by adding two derived pieces of
information: the list of members forming the path between the ancestor and the
descendant of each couple of the closure, and the length of this path. For instance,
the path of couple (C01,C04) is .C01.C02.C03.C04. and its length is 3.

The extended version is shown in Figure 12.3 and is generated by Script 12.2.
The path is built with the technique elaborated in Chapter 19 of the Tutorial, each Id
being surrounded by commas.

set Closure = select Father,PiD from MEMBER
 where Father is not null
 union all
 select P.Ancestor, M.PiD
 from PATHS P,MEMBER M
 where P.Descendant = M.Father;

with recursive PATHS(Ancestor,Descendant) as ($Closure$)
select Ancestor,Descendant
from PATHS
order by Ancestor,Descendant;

4 Case study 12 • Kings of France - Part 2

Printed 5/6/23

+----------+------------+-----|-----------------------+
| Ancestor | Descendant | Len | Path |
+----------+------------+-----|-----------------------+
B00	B01	1	.B00.B01.
B00	B02	2	.B00.B01.B02.
...
C00	C01	1	.C00.C01.
C00	C02	2	.C00.C01.C02.
C00	C03	3	.C00.C01.C02.C03.
C00	C04	4	.C00.C01.C02.C03.C04.
...
C01	C02	1	.C01.C02.
C01	C03	2	.C01.C02.C03.
C01	C04	3	.C01.C02.C03.C04.
...
C02	C03	1	.C02.C03.C04.
C02	C04	2	.C02.C03.C04.
...
V14	V17	1	.V14.V17.
+----------+------------+-----|-----------------------+

Figure 12.3 - The extended transitive closure of table MEMBER (excerpts)

Script 12.2 - Extending the closure of table MEMBER - CTE-based

Since we will use this CTE in several queries, it would be a good idea to transform it
into a real SQL view.2 We change the name of the CTE for CTE_PATHS so that the
view can be named PATHS (Script 12.3).

To illustrate the exploitation of the closure, we suggest three application queries.
Script 12.4 checks if a member is an ancestor of another one.

set Closure = select Father,PiD,1,'.'||Father||'.'||PiD||'.'
 from MEMBER where Father is not null
 union all
 select P.Ancestor,M.PiD,P.Len+1,
 P.Path||M.PiD||'.'
 from CTE_PATHS P,MEMBER M
 where P.Descendant = M.Father;

with recursive
 PATHS(Ancestor,Descendant,Len,Path) as ($Closure$)
select Ancestor,Descendant,Len,Path
from PATHS order by Len,Ancestor,Descendant;

2. Or in a temporary table with appropriate indexes, if run time matters.

5

Printed 5/6/23

Script 12.3 - Transformation of the CTE into an actual SQL view

Script 12.4 - Two scripts that check if member A is an ancestor of member B

Script 12.5 displays all the grandfather/grandson couples from the hierarchy.

Script 12.5 - Grandfather-grandson relationships

Finally, Script 12.6 checks whether member B is between member A and member C
in the same branch without being any of them. The last condition examines whether
the intermediate member (B) appears in the path from A to C. Both the first and the
last characters (dots) are excluded from the search to prevent B from being found at
the head or at the end of the path.

We could also check whether some paths include A, B and C in this order:

path like '%.A.%.B.%.C.%'

set Closure = <cfr. Script 12.2>;

create temporary view PATHS as
 with recursive
 CTE_PATHS(Ancestor,Descendant,Len,Path) as ($Closure$)
 select Ancestor,Descendant,Len,Path
 from CTE_PATHS;

ask A,B = Ancestor:||Descendant:;
extract C = select count(*) from PATHS
 where Ancestor = 'A' and Descendant = 'B';
if (C = 1) showMessage A is an ancestor of B;

ask A,B = Ancestor:||Descendant:;
select case when count(*) = 1
 then 'Yes, A is an ancestor of B'
 else 'No, A is not an ancestor of B'
 end as "Is A an ancestor of B?"
from PATHS
where Ancestor = 'A' and Descendant = 'B';

select Ancestor,Descendant from PATHS where Len = 2;

6 Case study 12 • Kings of France - Part 2

Printed 5/6/23

Script 12.6 - Are members A, B and C in the same branch?

12.2 Loop-based computing of the transitive closure

Loop-based algorithms can be less elegant than recursive queries but they allows
more complex processing on each row of the resultset. They may also be preferred
by programmers less familiar with recursive CTE.

Table PATHS, that will contain the paths to build, is initialized with the Father-
Son couples extracted from table MEMBER. The next set of paths, built by a join
between table PATHS and MEMBER, will be first stored in working table LAST, then
moved table PATHS. Tables PATHS and LAST have the same structure:

PATHS(Ancestor,Descendant,Length,Path);
LAST (Ancestor,Descendant,Length,Path);

However, this join is not applied to the full contents of PATHS, but only to the subset
just added by the previous iteration (otherwise, the loop would run forever). This is
controlled by variable length: initialization stores paths of length 1, the first iteration
of the loop adds paths of length 2, the next iteration adds paths the length 3, and so
on until all the Father-Son couples of table MEMBER have been exhausted, that is,
when table LAST is empty.

Based on these principles, we build Script 12.7, which extracts the same data as
Script 12.2. It is worth noticing that this iterative algorithm is quite similar to the
internal mechanism of recursive CTE, though likely to be less efficient.

12.3 Counting descendants

Through view PATHS created by Script 12.3 one can easily count the descendants of
each member:

select Ancestor, count(*) as Descent
from PATHS
group by Ancestor
order by Descent desc, Ancestor;

ask A,B,C = A:|B:|C:;
extract N = select count(*) from PATHS
 where Ancestor = 'A' and Descendant = 'C'
 and Path like '.%.B.%.';
write N;

7

Printed 5/6/23

Script 12.7 - Extending the closure of table MEMBER - Loop-based

To provide a complete answer, we also have to add, through the union operator,
members who have no descendants:

select PiD as Ancestor, 0 as Descent
from MEMBER
where PiD not in (select Ancestor from PATHS)

This query (lines [2-9] in Script 12.8) returns a minimalist two column resultset that
is not particular attractive. We will improve it by adding the name of the member
and by inserting the data into a nice sentence format like that of Figure 12.4.

+---+
| [C00] HUGHES CAPET, King of France, has 35 royal descendants |
| [C01] ROBERT II, King of France, has 34 royal descendants |
| [C02] HENRI I, King of France, has 33 royal descendants |
| [C03] PHILIPPE I, King of France, has 32 royal descendants |
| ... |
| [V02] JEAN II, King of France, has 11 royal descendants |
| [V03] CHARLES V, King of France, has 10 royal descendants |
| [B09] HENRI IV, King of France, has 7 royal descendants |
| [B10] LOUIS XIII, King of France, has 6 royal descendants |
| [B11] LOUIS XIV, King of France, has 4 royal descendants |
| [C10] PHILIPPE IV, King of France, has 4 royal descendants |
| [V13] FRANCOIS I, King of France, has 4 royal descendants |
| ... |
| [V16] CHARLES IX, King of France, has 0 royal descendants |
| [V17] HENRI III, King of France, has 0 royal descendants |
+---+

Figure 12.4 - An expressive presentation of the data

insert into PATHS select Father,PiD,1,
 '.'||Father||'.'||PiD||'.'
 from MEMBER where Father is not null;

for length = [1,99];
 insert into LAST
 select P.Ancestor, M.PiD, $length$+1, P.Path||'.'||M.PiD
 from PATHS P, MEMBER M
 where P.Descendant = M.Father
 and P.Length = $length$;

 extract lastN = select count(*) from LAST;
 if ($lastN$ = 0) exit;

 insert into PATHS select * from LAST;
 delete from LAST;
endfor;

8 Case study 12 • Kings of France - Part 2

Printed 5/6/23

In addition, we will consider kings only: we count the kings in the descent of each
king of France. Hence the query of Script 12.8, which deserves a bit of explanation

This query is built as a join of view KING [1] with the former expression [2-9] to
extract additional information and to limit the members to those who are kings.
Counting kings only in their descent is obtained by condition [4]. So, both ancestors
and descendants are kings of France.

Script 12.8 - Generating the description of kings with the number of descendants

12.4 Showing the descendants of a member

In the next project, we will produce an indented list of the descendants of a
member. Each son is displayed with a two space right shift + a dash character to
make the hierarchy explicit. We would like something like the list of Figure 12.5.

Descent of LOUIS IX, roi de France:

- PHILIPPE III, Roi de France
 - PHILIPPE IV, Roi de France
 - LOUIS X, Roi de France
 - JEAN I, Roi de France
 - PHILIPPE V, Roi de France
 - CHARLES IV, Roi de France
 - Charles, Comte de Valois
 - PHILIPPE VI, Roi de France
 - JEAN II, Roi de France
 - CHARLES V, Roi de France
 - CHARLES VI, Roi de France
 - CHARLES VII, Roi de France
 - LOUIS XI, Roi de France
 - CHARLES VIII, Roi de France
 - Louis I, Duc d'Orléans
 - Charles, Duc d'Orléans
 - LOUIS XII, Roi de France
 - Jean, Comte d'Angoulême

select '['||Ancestor||'] '||K.Name||', King of France, has
 '||Descent||' royal descendants'
from KING K, [1]
 (select Ancestor, count(*) as Descent [2]
 from PATHS [3]
 where Descendant in (select PiD from KING) [4]
 group by Ancestor [5]
 union [6]
 select PiD as Ancestor, 0 as Descent [7]
 from MEMBER [8]
 where PiD not in (select Ancestor from PATHS)) DC [9]
where DC.Ancestor = K.PiD [10]
order by Descent desc,Ancestor;

9

Printed 5/6/23

 - Charles, Comte d'Angoulême
 - FRANCOIS I, Roi de France
 - HENRI II, Roi de France
 - FRANCOIS II, Roi de France
 - CHARLES IX, Roi de France
 - HENRI III, Roi de France
- Robert, Comte de Clermont
 - Louis I, Duc de Bourbon
 - Jacques I, Comte de La Marche
 - Jean I, Comte de La Marche
 - Louis, Comte de Vendôme
 - Jean VIII, Comte de Vendôme
 - François, Comte de Vendôme
 - Charles, Duc de Vendôme
 - Antoine, Duc de Vendôme
 - HENRI IV, Roi de France
 - LOUIS XIII, Roi de France
 - LOUIS XIV, Roi de France
 - Louis, Grand Dauphin
 - Louis, Petit Dauphin
 - LOUIS XV, Roi de France
 - Louis, Dauphin de France
 - LOUIS XVI, Roi de France
 - LOUIS XVIII, Roi de France
 - CHARLES X, Roi de France
 - Philippe I, Duc d'Orléans
 - Philippe II, Duc d'Orléans
 - Louis, Duc d'Orléans
 - Louis Philippe I, Duc d'Orléans
 - Philippe Égalité, Duc d'Orléans
 - LOUIS PHILIPPE I, Roi de France

Figure 12.5 - Indented list of the descent of LOUIS IX

The members are listed according to the depth first traversal described in Section
19.6 (Recursive programming) of the Tutorial, from which we derive Script 12.9.

Script 12.9 - Extracting the descent of a member through a recursive query

ask pid = Member:[!select PiD from MEMBER order by PiD];
extract Nam,Tit = select Name,Title
 from MEMBER where PiD = 'pid';

write-a Descent of Nam,Tit;

with recursive TREE(Ind,Father,PiD,Path) as
 (select '','pid',PiD,'.'||'pid'||'.'||PiD||'.'
 from MEMBER where Father = 'pid'
 union
 select T.Ind||' ',T.PiD,M.PiD,T.Path||M.PiD||'.'
 from TREE T, MEMBER M
 where T.PiD = M.Father)

select Ind||'- '||M.Name||', '||M.Title as ""
from TREE T, MEMBER M
where T.PiD = M.PiD
order by T.Path;

10 Case study 12 • Kings of France - Part 2

Printed 5/6/23

Alternative computing through a loop-based script
The scripts 12.10 use another technique for generating this hierarchical text: a loop
scans the resultset of the CTE described above and writes, for each of its row, a line
of the tree.

Script 12.10 - Extracting the descent of a member through a loop-based script

12.5 Graphical representation of king genealogy

Instead of merely printing member data as a pure text as we did in the previous
section, it would be nicer to draw the tree as we may find it in some web sites.

We can use the SQLdraw engine to present the data in a graphical way. We first
generate an SQLdraw script file representing the tree, then we render it with the
showDrawing statement.

The detail of the generation of the SQLdraw file is described in complement
document SQLfast-Case-Kings-of-France-Draw.pdf available in the script directory of
this case study.

Figure 12.6 shows a simple representation of the Father-son tree of the members.
In Figure 12.7, an improved drawing allows a better understanding of the tree struc-
ture. In addition, king descriptors are written in blue, which is the natural color of
(the blood of) kings of France!

for txt =
 [with recursive TREE(Ind,Father,PID,Path) as
 (select '','pid',PiD,'.'||'pid'||'.'||PiD||'.'
 from MEMBER where Father = 'pid'
 union
 select T.Ind||' ',T.PiD,M.PiD,T.Path||M.PiD||'.'
 from TREE T, MEMBER M
 where T.PiD = M.Father
)
 select Ind||'- '||M.Name||', '||M.Title as ""
 from TREE T, MEMBER M
 where T.PiD = M.PiD
 order by T.Path
];
 write @stxt;
endfor;

11

Printed 5/6/23

Figure 12.6 - The descent of King LOUIS IX (excerpt) - Simple version

12.6 Recovering the source data from their closure

This is a basic exercise that seems to have no immediate practical interest, but that
will prove quite useful for the project discussed in the next section. The problem can
be formulated as:

how can we extract from the 850 rows of the closure of table MEMBER the
source data recorded in MEMBER?

More precisely, we would like to select the couples (Father,PiD) of the closure that
also belong to table MEMBER. This operation, that removes all the couples that can
be built by composing two other couples, is called transitive reduction.

12 Case study 12 • Kings of France - Part 2

Printed 5/6/23

Figure 12.7 - The descent of King Louis IX - Improved version

The solution can be designed on the basis of some properties of these couples of the
closure. We describe three of them:

1. If the closure is complemented with the length information (column Len), the
selected couples satisfy condition (Len = 1), this is clearly the simplest and
most efficient procedure.

2. A couple (M1,M3) of the closure is selected if there is no member M2, different
from M1 and M3, such that couples (M1,M2) and (M2,M3) are in the closure.

3. A couple (M1,M3) of the closure is selected if there is no pair of couples
(Ma,Mb) and (Mc,Md) in the closure such that M1 = Ma, Mb = Mc and Md = M2).

Query [1] of Script 12.11 implements the third property, which does not require Len.

13

Printed 5/6/23

Script 12.11 - Transitive reduction of a closure: retrieving the source Father/Son
relationships

12.7 Extracting the hierarchy of kings

This project is more concrete and can find applications in various actual situations.
The goal is to extract from table MEMBER a subtree that comprises all the kings and
only them. All the members who are not king do not appear in the hierarchy. Figure
12.8 shows what we want to extract. The links no longer represent the father/son
relationships but rather the closest king ancestor/king relationships.

Selecting the kings among the members is easy, but combining the father/son
links between them to produce ancestor/descendant links seems a bit more tricky.
When non-king members appear between two kings, they are skipped and these
kings are connected by a direct link.

Let us first observe that the ancestor/descendant links we are looking for are in the
closure of MEMBER. Moreover, if we select in this closure the couples of two kings,
we get the links we are looking for, but also those links that are combinations of the
latter. In short, the full set of the ancestor/descendant links form the closure of the
desired set of couples.

We consider the example of path .B11.B12.B13.B14.B15.B16., illustrated in
Figure 12.9. This path includes three kings, namely LOUIS XIV (B11), LOUIS XV
(B14) and LOUIS XVI (B16).

set Closure = select PiD,PiD from MEMBER
 union all
 select P.Ancestor, M.PiD
 from CTE_PATHS P,MEMBER M
 where P.Descendant = M.Father;

create view PATHS as
with recursive CTE_PATHS(Ancestor,Descendant) as ($Closure$)
select Ancestor,Descendant from CTE_PATHS
where Ancestor <> Descendant;

select P.Ancestor,P.Descendant [1]
from PATHS P
where not exists (select 1 from PATHS Pab, PATHS Pcd
 where P.Ancestor = Pab.Ancestor
 and Pab.Descendant = Pcd.Ancestor
 and Pcd.Descendant = P.Descendant)
order by P.Ancestor,P.Descendant;

14 Case study 12 • Kings of France - Part 2

Printed 5/6/23

Figure 12.8 - The hierarchy reduced to the kings

The left side schema shows the fragment of the closure of MEMBER between B11
and B16. The central schema shows the kings and the links connecting them. The
right side schema is the subset of these links we are looking for. We call the result
the projection of MEMBER on its king members.

These observations provide us with a means to extract what we want:
– We select KK, the set of the couples of the closure of MEMBER in which both

members are kings (central schema of Figure 12.9).
– We extract from KK the couples that cannot be built by composing two other

couples (left side schema of Figure 12.9). In other words, we extract the transitive
reduction of KK, a problem we have addressed in the previous section.

HUGHES CAPET
ROBERT II

HENRI I
PHILIPPE I
LOUIS VI
LOUIS VII

PHILIPPE II
LOUIS VIII
LOUIS IX

PHILIPPE III

PHILIPPE IV PHILIPPE VI
JEAN II

CHARLES V

LOUIS X
JEAN I

PHILIPPE V CHARLES IV

CHARLES VI
CHARLES VII

LOUIS XI
CHARLES VIII

LOUIS XII FRANCOIS I
HENRI II

HENRI IIIFRANCOIS II CHARLES IX

HOUSE OF VALOIS

HOUSE OF CAPET

HENRI IV
LOUIS XIII

LOUIS XIV
LOUIS XV

LOUIS PHILIPPE I

LOUIS XVI

HOUSE OF BOURBON

HOUSE
OF ORLÉANS

LOUIS XVIII CHARLES X

15

Printed 5/6/23

Figure 12.9 - Fragment of the closure of MEMBER (left), of its projection on kings
(center) and of the transitive reduction (right)

Once again, there are several ways to solve the transitive reduction problem, each
based on properties such as the following:

1. A couple (K1,K3) of KK, with path P13, is selected if there is no king K2, dif-
ferent from K1 and K3, that appears in P13. This is the simplest and the more
efficient procedure, but it requires the recording of the paths.

2. A couple (K1,K3) of KK is selected if there is no pairs of couples (Ka,Kb) and
(Kc,Kd) in the closure of MEMBER such that K1 = Ka, Kb = Kc and Kd = K2).

3. A couple (K1,K3) of KK is selected if there is no king K2, different from K1 and
K3, such that couples (K1,K2) and (K2,K3) are in the closure of MEMBER.

Script 12.12 is based on the first idea. The main query joins each component of the
couples of PATHS with its respective MEMBER [1,3]. Condition [2] discards the
initialization couples. Conditions [4] force the elements of the couples to be kings.
Condition [5] discards the couples, the path of which includes another king.

Figure 12.10 shows the result of the execution of this script while Figure 12.11
presents this information in a graphical way.

B11 LOUIS XIV

B12 Louis, Grand Dauphin

B13 Louis, Petit Dauphin

B14 LOUIS XV

B15 Louis, Dauphin de France

B16 LOUIS XVI

B11 LOUIS XIV

B14 LOUIS XV

B16 LOUIS XVI

B11 LOUIS XIV

B14 LOUIS XV

B16 LOUIS XVI

16 Case study 12 • Kings of France - Part 2

Printed 5/6/23

Script 12.12 - Extracting the royal hierarchy

+----------+--------------+------------+--------------+-------------------+
| Ancestor | Name | Descendant | Name | Path |
+----------+--------------+------------+--------------+-------------------+
| B09 | HENRI IV | B10 | LOUIS XIII | .B09.B10. |
| B10 | LOUIS XIII | B11 | LOUIS XIV | .B10.B11. |
| ... |
| B11 | LOUIS XIV | B14 | LOUIS XV | .B11.B12.B13.B14. |
| B14 | LOUIS XV | B16 | LOUIS XVI | .B14.B15.B16. |
| B14 | LOUIS XV | B17 | LOUIS XVIII | .B14.B15.B17. |
| B14 | LOUIS XV | B18 | CHARLES X | .B14.B15.B18. |
| C00 | HUGHES CAPET | C01 | ROBERT II | .C00.C01. |
| C01 | ROBERT II | C02 | HENRI I | .C01.C02. |
| C02 | HENRI I | C03 | PHILIPPE I | .C02.C03. |
| C03 | PHILIPPE I | C04 | LOUIS VI | .C03.C04. |
| C04 | LOUIS VI | C05 | LOUIS VII | .C04.C05. |
| C05 | LOUIS VII | C06 | PHILIPPE II | .C05.C06. |
| C06 | PHILIPPE II | C07 | LOUIS VIII | .C06.C07. |
| C07 | LOUIS VIII | C08 | LOUIS IX | .C07.C08. |
| ... |
| C08 | LOUIS IX | C09 | PHILIPPE III | .C08.C09. |
| C09 | PHILIPPE III | C10 | PHILIPPE IV | .C09.C10. |
| C09 | PHILIPPE III | V01 | PHILIPPE VI | .C09.V00.V01. |
| C10 | PHILIPPE IV | C11 | LOUIS X | .C10.C11. |
| C10 | PHILIPPE IV | C12 | PHILIPPE V | .C10.C12. |
| C10 | PHILIPPE IV | C13 | CHARLES IV | .C10.C13. |
| C11 | LOUIS X | C14 | JEAN I | .C11.C14. |
| V01 | PHILIPPE VI | V02 | JEAN II | .V01.V02. |
| V02 | JEAN II | V03 | CHARLES V | .V02.V03. |
| ... |
| V13 | FRANCOIS I | V14 | HENRI II | .V13.V14. |
| V14 | HENRI II | V15 | FRANCOIS II | .V14.V15. |
| V14 | HENRI II | V16 | CHARLES IX | .V14.V16. |
| V14 | HENRI II | V17 | HENRI III | .V14.V17. |
+----------+--------------+------------+--------------+-------------------+

Figure 12.10 - The royal hierarchy produced by Script 12.12

set Closure = select PiD,PiD,'.'||PiD||'.' from MEMBER
 union all
 select P.Ancestor, M.PiD, P.Path||M.PiD||'.'
 from PATHS P,MEMBER M
 where P.Descendant = M.Father;

with recursive PATHS(Ancestor,Descendant,Path) as ($Closure$)

select P.Ancestor,K1.Name,P.Descendant,K3.Name,P.Path
from MEMBER K1, PATHS P, MEMBER K3 [1]
where P.Ancestor <> P.Descendant [2]
and P.Ancestor = K1.PiD and P.Descendant = K3.PiD [3]
and K1.Title = 'Roi de France' [4]
and K3.Title = 'Roi de France' [4]
and not exists (select count(*) from KING K3 [5]
 where P.Path like '_%.'||K3.PiD||'.%_')
order by P.Ancestor,P.Descendant;

17

Printed 5/6/23

Figure 12.11 - The royal hierarchy based on ancestor/descendant relationships

12.8 The scripts

The algorithms and programs developed in this study are available as SQLfast
scripts in directory SQLfast/Scripts/Case-Studies/Kings-of-France. Actually, they
can be run from main script Kings-MAIN.sql, that displays the selection box of
Figure 12.12.

18 Case study 12 • Kings of France - Part 2

Printed 5/6/23

Figure 12.12 - Kings of France: selecting an application

These scripts are provided without warranty of any kind. Their sole objectives are to
concretely illustrate the concepts of the case study and to help the readers master
these concepts, notably in order to develop their own applications.

