
Case study 10 10

Temporal databases - Part 2

Objective. In this second part of the study of temporal data, we examine
the various ways to query and transform them. We first examine simple
temporal and non temporal queries, providing themselves temporal and
non temporal results. Then, we extend to the temporal dimension the
main families of queries of standard, non temporal, SQL: projection
(entity-based and generalized), inner join and outer join, aggregation
(count, max, min, average, sum). We also describe the SQLfast
temporal library LTemp that offers a series of operators intended to
write concise and efficient temporal scripts. The various temporal data
models described in part 1 are revisited in order to develop conversion
algorithms from one model to each of the other ones. Finally, we
address the problem of performance by comparing the various algo-
rithms of the temporal operators. To get realistic execution time
measures we apply these algorithms to larger temporal databases. The
last section is devoted to a short description of the SQL:2011 standard,
that introduces some (but not all) concepts of temporal databases.

Keywords. temporal relations, temporal query, temporal projection,
coalescing, temporal inner join, temporal outer join, temporal aggrega-
tion, stable interval, temporal data model conversion, temporal operator
performance, SQL:2011, LTemp library.

2 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

10.1 Introduction

A temporal database can provide a response to a wide variety of time-related
queries. It is easy to understand that extracting, or consulting, data from a set of
historical tables is more complex than similar operations on traditional databases,
limited to current states of the application domain. This feeling is both true and false.
Some temporal queries will have a simple and intuitive formulation in SQL, while
others will require far more complex SQL translation than their expression in plain
English.

10.2 Temporal relations

Temporal queries will often be based on definite relationships between two instants,
between an instant and an interval or between two intervals. We will briefly describe
these relationships, which specify the relative positions of their arguments. They all
derive from Allen's interval algebra which comprises 13 base relations1. The three
tables below classify the temporal relations and assign them their SQL interpreta-
tion. They postulate that instants and intervals share the same time granularity.

1. https://en.wikipedia.org/wiki/Allen’s_interval_algebra

Relations between instants t1 and t2

relation SQL expression

r1 t1 and t2 simultaneous t1 = t2

r2 t1 and t2 distinct t1 <> t2

r3 t1 before t2 t1 < t2

r3 t1 after t2 t1 > t2

r5 t1 not before t2 t1 >= t2

r6 t1 not after t2 t1 <= t2

Relations between instant t and temporal interval I ≡ [s,e)

relation SQL expression

r7 t before I t < s

r8 t after I t >= e

r9 I starts with t t = e

r10 I ends with t t = e - 1

r11 I includes t s <= t and t < e

r12 I starts before t s < t

r13 I ends after t e - 1 > t

3

Printed 29/8/19

Intersection of intervals

Let us consider intervals I1 ≡ [s1,e1) and I2 ≡ [s2,e2). If they overlap, that is, if e1 >
s2 and s1 < e2 (or if max(s1,s2) < min(e1,e2)), their intersection can be computed as:

intersect(I1,I2) ≡ [max(s1,s2),min(e1,e2))

This expression can be generalized to more than two intervals:

intersect(I1,..,In) ≡ [max(s1,..,sn),min(e1,..,en))

Note

It may come as a surprise that we do not suggest in this study to develop a user
defined temporal function that checks whether two intervals overlap, something
like

overlap(s1,e1,s2,e2)

Such a function should simplify many queries and make them easier to write and
to understand, and this, especially since several DBMS (SQLite excluded, unfor-
tunately) already include such a function in their core library (the overlaps()
function of SQL:2011 for example). The answer is related to execution perfor-
mance of queries. Most of them can be considerably accelerated thanks to
indexes defined on temporal columns start and end. If these columns appear
explicitly in SQL conditions, the query optimizer is able to take these indexes
into account when computing the best execution plan.

So, in the limited context of this case study, the answer is twofold: nice idea for
small temporal databases but it will prevent the DBMS to optimize many queries
operating on large, complex databases.

Relations between intervals I1 ≡ [s1,e1) and I2 ≡ [s2,e2)

relation SQL expression

r14 I1 before I2 e1 <= s2

r15 I2 follows I1 (aka I1 meets I2) s1 = e2

r16 I1 starts I2 s1 = s2

r17 I1 ends I2 e1 = e2

r18 I1 during I2 (s1 >= s2) and (e1 <= e2)

r19 I1 equals to I2 (s1 = s2) and (e1 = e2)

r20 I1 and I2 disjoint (implied by r14
and r15)

(e1 <= s2 or (s1 >= e2)

r21 I1 and I2 overlap (implied by r16 to
r19)

(e1 > s2) and (s1 < e2)
max(s1,s2) < min(e1,e2)

4 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Anyway, function toverlap 2 is available in the SQLfast library, but this does
not invalidate the above reasoning. Therefore, to use with caution!

10.3 The example temporal databases

We will develop and discuss the different classes of queries on the basic temporal
model according to which all the states, past and current, are stored in the same
tables (entity-based, or more generally, tuple-based model). Here below, we recall
the structure and contents of historical tables H_EMPLOYEE, H_PROJECT and the
views showing the current states of employees and projects.

2. toverlap, for temporal overlap, applicable to closed-open intervals.

5

Printed 29/8/19

This database is fine to develop temporal queries and scripts, to analyze their
behavior and to observe their effect, but it is far too small to be useful when we eval-
uate and compare their execution performance. To this goal, we will use larger
experimental data sets comprising the history of 100 to 200,000 employees.

10.4 Non temporal queries

A history table also shows the current states of the entities and can therefore answer
the classic queries specific to non-temporal databases. Expressed on the views of the
current states, these queries are identical to those of the equivalent non-temporal
databases.

6 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

• What is the current state of employee M158?

Script 10.1 - Current state of employee M158

+------+---------+--------+-------+---------+
| CODE | NAME | SALARY | CITY | PROJECT |
+------+---------+--------+-------+---------+
| M158 | Mercier | 3000 | Paris | BIOTECH |
+------+---------+--------+-------+---------+

• Same query against the historical table.

Script 10.2 - Current state of employee M158 (from the historical table).

• Show the project(s) with the highest budget.

Script 10.3 - Project(s) with the highest budget.

+---------+--------+
| TITLE | BUDGET |
+---------+--------+
| BIOTECH | 140000 |
+---------+--------+

10.5 Temporal queries with temporal result

A temporal query consults past and current entity states. Its result may or may not be
temporal. The state of an entity, or of a set of entities, at a definite time point gener-
ally is called a snapshot.

select CODE,NAME,SALARY,CITY,PROJECT
from EMPLOYEE
where CODE = 'M158';

select CODE,NAME,SALARY,CITY,PROJECT
from H_EMPLOYEE
where CODE = 'M158' and end = '9999-12-31';

select distinct TITLE,BUDGET
from PROJECT
where BUDGET = (select max(BUDGET) from PROJECT);

7

Printed 29/8/19

We will first consider simple queries that produce temporal data extracted from a
single table. In these queries, variable Tfuture denotes infinite future, typically 9999-
12-31.

• Show the history of employees between 2016-01-01 and 2016-12-31.

The interesting aspect of this query is the clipping of the intervals of the first and
last state of each employee to adjust them to the interval of the query.

Script 10.4 - History of employees between 2016-01-01 and 2016-12-31

 +------+--------+--------+----------+-----------+------------+------------+
 | CODE | NAME | SALARY | CITY | PROJECT | Start | End |
 +------+--------+--------+----------+-----------+------------+------------+
A68	Albert	3700	Toulouse	SURVEYOR	2016-01-01	2016-10-22
A68	Albert	3900	Paris	SURVEYOR	2016-10-22	2016-12-31
...
N240	Nguyen	3700	Grenoble	SURVEYOR	2016-09-16	2016-12-29
N240	Nguyen	3700	Genève	AGRO-2000	2016-12-29	2016-12-31
 +------+--------+--------+----------+-----------+------------+------------+

• Show the life of the projects

To make data more readable, infinite future is displayed as null value.

Script 10.5 - Life of the projects

+-----------+------------+------------+
| TITLE | Started | Closed |
+-----------+------------+------------+
AGRO-2000	2016-08-31	--
BIOTECH	2014-11-18	--
SURVEYOR	2015-10-30	2017-05-19
+-----------+------------+------------+

select CODE,NAME,SALARY,CITY,PROJECT
 max(start,'2016-01-01') as "Start",
 min(end,'2016-12-31') as "End",
from H_EMPLOYEE
where start < '2016-12-31' and '2016-01-01' < end
order by NAME,"Start","End";

select TITLE,min(start) as Started,
 case when max(end) = '$Tfuture$'
 then null
 else max(end) end as Closed
from H_PROJECT
group by TITLE

8 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

• Show the start date, end date and life span (duration or age) of each closed project

This query makes use of temporal function durationDays(d1,d2), which returns the
number of days between time points d1 and d2 (typically dates). If the arguments
denote time or datetime values, the result is rounded to the closest integer.

Script 10.6 - Start date, end date and duration of each closed project

+----------+------------+------------+-----+
| TITLE | Start | End | Age |
+----------+------------+------------+-----+
| SURVEYOR | 2015-10-30 | 2017-05-19 | 567 |
+----------+------------+------------+-----+

• We observe that several expressions appear more than once, which may make the
query fairly obscure and its execution potentially inefficient (depending on the
optimizer). We suggest to rewrite the query with a CTE.

Script 10.7 - Same with a CTE

• Display the start date and current age of each active project

The age of an active project is computed from its start date to the current date
(given by system variable date). This is a typical example of non deterministic
query: run it tomorrow and it will give another result, though the database has not
been updated!

select TITLE, min(start) as "Start", max(end) as "End",
 durationDays(min(start),max(end)) as Age
from H_PROJECT
group by TITLE
having max(end) < '$Tfuture$';

with MinMax(TITLE,MinStart,MaxEnd)
as (select TITLE, min(start) as MinStart, max(end) as MaxEnd
 from H_PROJECT
 group by TITLE
 having MaxEnd < '$Tfuture$')
select TITLE,MinStart as "Start",MaxEnd as "End",
 durationDays(MinStart,MaxEnd) as Duration
from MinMax;

9

Printed 29/8/19

Script 10.8 - Start date and current age of each active project (through a CTE)

+-----------+------------+------+
| TITLE | Start | Age |
+-----------+------------+------+
| AGRO-2000 | 2016-08-31 | 917 |
| BIOTECH | 2014-11-18 | 1569 |
+-----------+------------+------+

• When did the budget of each project exceed 150,000?

Script 10.9 - When did the budget of each project exceed 150,000?

Warning. Though the result shown below looks good, this query can produce a
non-standardized history, as states of some projects may not be consecutive and
some consecutive states may by identical (the exact term is value-equivalent).
Actually, the operation requested is a projection. More on this later on. Same
remark on the next query.

+----------+--------+------------+------------+
| TITLE | BUDGET | start | end |
+----------+--------+------------+------------+
BIOTECH	180000	2014-11-18	2015-02-27
BIOTECH	160000	2015-02-27	2015-06-15
SURVEYOR	310000	2015-10-30	2016-06-25
SURVEYOR	375000	2016-06-25	2016-12-20
SURVEYOR	345000	2016-12-20	2017-05-19
+----------+--------+------------+------------+

• What was (and when) the maximum budget of each project?

with StartAge(TITLE,MinStart)
as (select TITLE, min(start) as MinStart
 from H_PROJECT
 group by TITLE
 having max(end) = '$Tfuture$')
select TITLE,MinStart as "Start",
 durationDays(MinStart,'$date$') as Age
from StartAge;

select TITLE,BUDGET,start,end
from H_PROJECT
where BUDGET > 150000;

10 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Script 10.10 - What was (and in what periods) the maximum budget of each project?

+-----------+--------+------------+------------+
| TITLE | BUDGET | start | end |
+-----------+--------+------------+------------+
BIOTECH	180000	2014-11-18	2015-02-27
SURVEYOR	375000	2016-06-25	2016-12-20
AGRO-2000	82000	2017-07-05	9999-12-31
+-----------+--------+------------+------------+

10.6 Temporal queries with non temporal result

These queries explore time dependent data (H_* tables) but absorbs the time dimen-
sion, either by reducing the search space to a specific time point or through aggrega-
tion (statistical) functions on the time boundaries.

• Show the state of employee D107 on 2017-02-01 (snapshot)

Script 10.11 - Snapshot of employee D107 on 2017-02-01

+------+-----------+--------+----------+----------+
| CODE | NAME | SALARY | CITY | PROJECT |
+------+-----------+--------+----------+----------+
| D107 | Delecourt | 4100 | Grenoble | SURVEYOR |
+------+-----------+--------+----------+----------+

• How many employees were assigned to the SURVEYOR project on 2017-02-01?

Script 10.12 - How many employees were assigned to the SURVEYOR project on
2017-02-01?

select TITLE,BUDGET,start,end
from H_PROJECT P
where BUDGET = (select max(BUDGET)
 from H_PROJECT
 where TITLE = P.TITLE);

select CODE,NAME,SALARY,CITY,PROJECT
from H_EMPLOYEE
where CODE = 'D107'
and start <= '2017-02-01' and '2017-02-01' < end;

select count(distinct CODE) as Staff
from H_EMPLOYEE
where PROJECT = 'SURVEYOR'
and start <= '2017-02-01' and '2017-02-01' < end;

11

Printed 29/8/19

+-------+
| Staff |
+-------+
| 3 |
+-------+

• How many projects has employee N240 been assigned to throughout her career?

Script 10.13 - How many projects has the N240 employee been assigned to
throughout her career?

+----------+
| Projects |
+----------+
| 3 |
+----------+

• How many projects was employee M158 assigned to while living in Paris?

Script 10.14 - How many projects was employee M158 assigned to while living in
Paris?

+----------+
| Projects |
+----------+
| 2 |
+----------+

• Which project(s) has employee N240 been assigned to the longest?

Note: SQLite does not allow subquery quantifiers any or all. In this expression,
the subquery selects the highest value within the durations of employee N240 in
her projects.

For current states, when the employee still is a member of the staff of the project,
the end value in the computation of the duration is replaced by the current date.
As already noticed, this query is non deterministic.

select count(distinct PROJECT) as Projects
from H_EMPLOYEE
where CODE = 'N240';

select count(distinct PROJECT) as Projects
from H_EMPLOYEE
where CODE = 'M158' and CITY = 'Paris';

12 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Script 10.15 - Which project(s) has employee N240 been assigned to the longest?

+---------+----------+
| PROJECT | Duration |
+---------+----------+
| BIOTECH | 703 |
+---------+----------+

10.7 Complex temporal queries

The queries developed so far are fairly mundane, once the bases of SQL have been
mastered. Unfortunately, and surprisingly, other seemingly harmless queries will
require much more complex SQL expressions. We will examine and resolve three
conventional operators that require the greatest care when applied to temporal data,
namely,

1. temporal projection (Section 10.8),

2. temporal join (Section 10.9) and outer join (Section 10.10).

3. temporal aggregation (Section 10.11).

Thanks to these operators, we will be able to resolve, sometimes in several steps,
most of the questions that are addressed to a temporal database, and which are
currently beyond our reach.

10.8 Temporal projection

The projection is the simplest operator that can be applied to non temporal data. It
consists in restricting the rows of a selection to certain columns of the initial table.
Considering the PROJECT table, its projection on columns TITLE and THEME, there-
fore discarding BUDGET values, is expressed in SQL as follows:

select PROJECT,
 sum(durationDays(start,min(end,'$date$'))) as Duration
from H_EMPLOYEE
where CODE = 'N240'
group by PROJECT
having Duration =
 (select sum(durationDays(start,min(end,'$date$'))) as Dur
 from H_EMPLOYEE
 where CODE = 'N240'
 group by PROJECT
 order by Dur desc limit 1);

13

Printed 29/8/19

Script 10.16 - SQL expression of the projection of PROJECT on columns TITLE and
THEME

If the columns of the select list do not include all the components of a unique (or
primary) key, then it is recommended to remove duplicates through the distinct
modifier:

Script 10.17 - SQL expression of a projection that produces a set of unique values

10.8.1 Entity-based temporal projection

We first study a simple variant of projection, in which the target columns include all
the components of a unique key. We will call it entity-based projection.

Let us apply the pattern of Script 10.16 to table H_PROJECT, from which we
want to display not only the couples of (TITLE,THEME) values of each project but
also the intervals in which each couple was valid. Let us try this query:

Script 10.18 - First attempt to compute the projection of table H_PROJECT on
columns TITLE and THEME

With this result:

+-----------+----------------------+------------+------------+
| TITLE | THEME | start | end |
+-----------+----------------------+------------+------------+
AGRO-2000	Crop improvement	2016-08-31	2017-04-14
AGRO-2000	Crop improvement	2017-04-14	2017-07-05
AGRO-2000	Crop improvement	2017-07-05	9999-12-31
BIOTECH	Biotechnology	2014-11-18	2015-02-27
BIOTECH	Genetic engineering	2015-02-27	2015-06-15
BIOTECH	Genetic engineering	2015-06-15	2016-08-23
BIOTECH	Genetic engineering	2016-08-23	2017-09-17
BIOTECH	Biotechnology	2017-09-17	9999-12-31
SURVEYOR	Satellite monitoring	2015-10-30	2016-06-25
SURVEYOR	Satellite monitoring	2016-06-25	2016-12-20
SURVEYOR	Satellite monitoring	2016-12-20	2017-05-19
+-----------+----------------------+------------+------------+

Figure 10.1 - Projecting H_PROJECT on TITLE, THEME - First (failing) trial

select TITLE,THEME
from PROJECT;

select distinct THEME
from PROJET

select TITLE,THEME,start,end
from H_PROJECT;

14 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Though these rows are not incorrect, anyway they represent true facts, the way they
display these facts is not what we expected. Let us add the clause order by start
to this query, and the result, though equivalent, becomes unreadable. The problem is
that these rows include several consecutive identical states, generally called value-
equivalent states. For instance, the first three rows of this result should be merged
into this single row:

| AGRO-2000 | Crop improvement | 2016-08-31 | 9999-12-31 |

In order to merge these states, let us try this query, that only keep the lowest and
highest time limits of consecutive value-equivalent states.

Script 10.19 - Second (still failing) attempt to compute the projection of table
H_PROJECT on columns TITLE and THEME

+-----------+----------------------+------------+------------+
| TITLE | THEME | Start | End |
+-----------+----------------------+------------+------------+
AGRO-2000	Crop improvement	2016-08-31	9999-12-31
BIOTECH	Biotechnology	2014-11-18	9999-12-31
BIOTECH	Genetic engineering	2015-02-27	2017-09-17
SURVEYOR	Satellite monitoring	2015-10-30	2017-05-19
+-----------+----------------------+------------+------------+

Figure 10.2 - Projecting H_PROJECT on TITLE, THEME - Second (failing) trial

At first glance, the result looks much better, until we observe a curious phenomenon:
one of the two states of project BIOTECH is embedded within the other one! So,
these rows tell that, from 215-02-27 to 2017-09-17, this project was in two distinct
states, with two different values of THEME, which is absurd.

Obviously, the correct answer should be the following:

+-----------+----------------------+------------+------------+
| TITLE | THEME | start | end |
+-----------+----------------------+------------+------------+
AGRO-2000	Crop improvement	2016-08-31	9999-12-31
BIOTECH	Biotechnology	2014-11-18	2015-02-27
BIOTECH	Genetic engineering	2015-02-27	2017-09-17
BIOTECH	Biotechnology	2017-09-17	9999-12-31
SURVEYOR	Satellite monitoring	2015-10-30	2017-05-19
+-----------+----------------------+------------+------------+

Figure 10.3 - Projecting H_PROJECT on TITLE, THEME - The correct expected
result

insert into H_THEME_2
select TITLE,THEME,min(start) as "Start",max(end) as "End"
from H_PROJECT
group by TITLE,THEME;

15

Printed 29/8/19

When we compare the rows of Figures 10.1 and 10.3, we immediately see that each
row of the correct result is formed by merging, or reducing3, a series of consecutive
value-equivalent rows in Figure 10.1. We call this series a maximal suite of identical
consecutive states or MSICS.

In temporal table R, an MSICS comprises one or several consecutive states (s1,
s2, ..., sn) such that:

– all these states are value-equivalent

– either s1 is the first state of R or its previous state is not value-equivalent; in
short, the first state does not follow a value-equivalent state

– either sn is the last state of R or its next state is not value-equivalent; in short,
the last state is not followed by a value-equivalent state.

Practically, if R represents project states, an MSICS P is defined by two project
states (P1, Pn), such that:

– P1 precedes Pn (unless the MSICS comprises one state only),

– P1 and Pn are value-equivalent; let us call their value v,

– there is no state P0 with value v that directly precedes P1,

– there is no state Pm with value v that directly follows Pn,

– all the states between P1 and Pn have the same value v; or, reversing the condi-
tion, no state between P1 and Pn has a value different from v.

These conditions are depicted in Figure 10.4.

Figure 10.4 - Definition of MSICS P comprising states (P1,..., Pn)

The algorithm reduces each MSICS to the unique state (v,s1,en). We express it
through the SQL query of Script 10.20

The first two conditions on subquery could be merged into this one:

and not exists (select * from H_PROJECT P0
 where (P0.TITLE,P0.THEME)=(P1.TITLE,P1.THEME)
 and (P0.end = P1.start
 or Pn.end = P0.start))

3. The technical term for this reduction operation is coalescing. Since SQL already includes a
function called coalesce, we will keep the name reduction.

TP0(v0) P1(v) Pi(v) Pn(v) Pm(vm)

P(v)

16 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Script 10.20 - Projecting temporal table H_PROJECT on columns (TITLE,THEME)

However, performance tests show that this concise form is five times slower than the
former one (observed with SQLite 3.28). So, we abandon the idea.

This algorithm works fine if the following strict conditions are met:

– The temporal table records the history of a set of similar entities, e.g.,
employees, projects, etc. These entities are identified by an entity primary key,
e.g., TITLE for projects in H_PROJECT or CODE for employees in
H_EMPLOYEE.

– The history of each entity is normalized, that is, it includes no gaps, no over-
lapping states, even though the latter are value-equivalent and no consecutive
value-equivalent states.

– The projection columns include the primary key of the entities, e.g.,
TITLE, THEME for H_PROJECT or CODE, CITY, PROJECT for H_EMPLOYEE.

Otherwise, it fails to produce a correct result. We will cope with this problem in
Section 10.8.3, but, before, we will study ways to represent missing information.

10.8.2 Temporal projection with null values

Let us suppose that we do not always know the city in which an employee has been
living. The usual way to translate this (absence of) knowledge consists in setting
column CITY to null (CITY must be declared nullable). Figure 10.5 shows that the
city of employee A68 was unknown during interval [2015-10-30, 2016-10-22).

 In the projection of H_EMPLOYEE on CODE, CITY, how do we represent the
missing information on employee A68? Do we generate a row telling that the value
of CITY is null during this interval, or do we merely discard such row? Figure 10.6
shows the state of the projection according to these alternatives.

select P1.TITLE, P1.THEME, P1.start, Pn.end
from H_PROJECT P1, H_PROJECT Pn
where (P1.TITLE,P1.THEME)=(Pn.TITLE,Pn.THEME)
and P1.start <= Pn.start
and not exists (select * from H_PROJECT P0
 where (P0.TITLE,P0.THEME)=(P1.TITLE,P1.THEME)
 and P0.end = P1.start)
and not exists (select * from H_PROJECT Pm
 where (Pm.TITLE,Pm.THEME)=(P1.TITLE,P1.THEME)
 and Pn.end = Pm.start)
and not exists (select * from H_PROJECT Pi
 where Pi.TITLE = P1.TITLE
 and Pi.THEME <> P1.THEME
 and P1.end <= Pi.start
 and Pi.end <= Pn.start);

17

Printed 29/8/19

+------+--------+--------+----------+----------+------------+------------+
| CODE | NAME | SALARY | CITY | PROJECT | start | end |
+------+--------+--------+----------+----------+------------+------------+
...
A68	Albert	3200	Toulouse	BIOTECH	2015-06-09	2015-10-30
A68	Albert	3700	--	SURVEYOR	2015-10-30	2016-10-22
A68	Albert	3900	Paris	SURVEYOR	2016-10-22	2017-05-19
...

Figure 10.5 - Information may be unknown for some period

+------+----------+------------+------------+
| CODE | CITY | start | end |
+------+----------+------------+------------+
...
A68	Toulouse	2015-06-09	2015-10-30
A68	--	2015-10-30	2016-10-22
A68	Paris	2016-10-22	2017-05-19
...

+------+----------+------------+------------+
| CODE | CITY | start | end |
+------+----------+------------+------------+
...
A68	Toulouse	2015-06-09	2015-10-30
A68	Paris	2016-10-22	2017-05-19
...

Figure 10.6 - To ways to represent missing information in a projection

The first representation preserves null values, known to induce complexity in data
processing. The second representation is more concise and more natural: the best
way to represent the absence of information is ... the absence of representation!

 On the other hand, rebuilding source table H_EMPLOYEE will use different oper-
ators, namely temporal inner join (Section 10.9) with the first representation and
temporal outer join (Section 10.10) in the second one.

The algorithm of Script 10.20 generates projections in the first representation.
Discarding null states is quite easy (Script 10.21).4

Script 10.21 - Translating the first representation into the second one

10.8.3 Generalized temporal projection

Let us consider the projection of H_EMPLOYEE on column CITY, which is clearly not
a unique key for employees. The result, shown below, should tell us in which cities
and when at least one employee worked (or still is working) on a project:

4. More generally: delete from H_T where (col1,.., coln) is (null,.., null)

delete from H_CITY where CITY is null;

18 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

+----------+------------+------------+
| CITY | start | end |
+----------+------------+------------+
Genève	2016-03-22	2016-12-08
Genève	2016-12-29	2017-08-09
Genève	2016-12-29	9999-12-31
Grenoble	2016-02-16	2016-03-22
Grenoble	2016-09-16	9999-12-31
Grenoble	2016-09-16	9999-12-31
Grenoble	2016-09-16	9999-12-31
Grenoble	2016-09-16	9999-12-31
Grenoble	2016-12-08	9999-12-31
Grenoble	2016-12-08	9999-12-31
Paris	2015-06-15	2017-05-19
Paris	2016-10-22	2017-05-19
Paris	2016-10-22	9999-12-31
Toulouse	2015-06-09	2016-10-22
Toulouse	2016-08-18	2016-09-16
Toulouse	2017-05-19	2017-07-24
+----------+------------+------------+

What do we observe?

• Many states overlap, which makes the data difficult to interpret.

• This history shows gaps (Genève was inactive between 2016-12-08 and 2016-
12-29). Though such gaps do not necessarily represent anomalies, they are a
new phenomenon.

• Worse, states are missing:. For instance, employee G96 (Godin) worked on
project BIOTECH from 2014-11-23 to 2016-08-31 while living in Genève. No
trace of this fact in the result.

Actually, the result we expect is the following:

+----------+------------+------------+
| CITY | start | end |
+----------+------------+------------+
Genève	2014-11-23	9999-12-31
Grenoble	2016-02-16	2016-03-22
Grenoble	2016-09-16	9999-12-31
Lille	2015-08-22	9999-12-31
Paris	2014-12-04	9999-12-31
Toulouse	2015-06-09	2016-10-22
Toulouse	2017-05-19	2017-07-24
+----------+------------+------------+

So, we conclude that the algorithm we just developed fails. Obviously, we must
build a more general algorithm that solves all the projection patterns. In particular, it
must apply to temporal tables which include:

– overlapping value-equivalent states,

– consecutive value-equivalent states,

– gaps.

19

Printed 29/8/19

In addition, it must tolerate incorrect data, according to which an entity is (errone-
ously) reported to be in more than one state. It must preserve them, leaving their
processing to another process.

Before developing this improved algorithm, we define the concept of interval
extension. Interval A extends interval B if their union has no gap and is larger than B.
More precisely,

• interval A extends interval B to the left (Figure 10.7, left) either if B follows A
(eA = sB) or if A starts before B and A and B overlap (sA < sB and eA > sB); in
short, if sA < sB and eA >= sB.

• interval A' extends interval B to the right (Figure 10.7, right), either if A' follows
B (sA' = eB) or if B starts before A' and A' and B overlap (sA' < eB and eA' > eB);
in short, if sA' <= eB and eA' > eB.

Figure 10.7 - Two ways for A (or A') to extend B

The key concept of maximum suite of identical consecutive states (MSICS) must be
extended to cope with overlapping states. So, we will consider reducing each
maximal suite of identical consecutive or overlapping states (or MSICOS). The
suite (S1, ..., Sn) is a MSICOS that must be reduced to (v,s1,en) if and only if:

1. S1 and Sn have the same value v

2. either S1 = Sn or S1 starts before Sn and does not ends after Sn (s1 <= sn and
e1 <= en)

3. there is no state S0 with value v that would extend S1 to the left

4. there is no state Sm with value v that would extend Sn to the right

5. there is no state of the MSICOS between S1 and Sn with a value different from
v

6. there is no missing state (gap) in the MSICOS between S1 and Sn.

Conditions 1 to 5 are fairly easy to express in SQL: they are simple extensions of
those of Script 10.20. However, condition 6 is more complicated since it describes
the absence of non-existent objects.

The algorithm we will develop is based on the idea described in [Böhlen,1996]5.
Let us consider state Sg with value v, that ends after e1 and before sn, that is,
e1 <= eg < sn. If Sg is extended to the right by any state Sk with value v, then Sg is
not followed by a gap. Hence the rule that implements condition 6:

5. Böhlen, M., R., Snodgrass, R., T., Soo, M., D., Coalescing in Temporal Databases, in Proc.
VLDB Conf., Sept. 1996

A B A'

A A'

20 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

if there exists a state Sg with value v such that e1 <= eg < sn, this state must be
extended to the right by a state Sk with value v

or, reversing this rule, which is easier to translate in SQL:

there is no state Sg with value v such that e1 <= eg < sn, that is not extended to
the right by a state Sk with value v

Figure 10.8 - Checking whether a gap exists between S1 and Sn

The algorithm that implements conditions 1 to 6 is translated into the query of Script
10.22.

Script 10.22 - Projecting temporal table H_EMPLOYEE on column CITY

Building this query is a nice intellectual exercise, but the result is not particularly
easy to understand. In addition, executing this query on large temporal tables will
probably be quite expensive (we will check this later).

select distinct E1.CITY, E1.start, En.end
from H_EMPLOYEE E1, H_EMPLOYEE En
where E1.CITY = En.CITY
and E1.start <= En.start and E1.end <= En.end
and not exists (select *
 from H_EMPLOYEE E0
 where E0.CITY = E1.CITY
 and E0.start < E1.start
 and E0.end >= E1.start)
and not exists (select *
 from H_EMPLOYEE Em
 where Em.CITY = E1.CITY
 and Em.start <= En.end
 and Em.end > En.end)
and not exists (select *
 from H_EMPLOYEE Eg
 where Eg.CITY = E1.CITY
 and E1.end <= Eg.end
 and Eg.end < En.start
 and not exists(select *
 from H_EMPLOYEE Ek
 where Ek.CITY = E1.CITY
 and Eg.end < Ek.end
 and Ek.start <= Eg.end));

 S1(v) Sn(v)

 Sg(v)
 Sk(v)

. . . .

21

Printed 29/8/19

Fortunately, we can develop a procedural algorithm that is much simpler and
faster. Let us consider this elementary query

select CITY,start,end
from H_EMPLOYEE
order by CITY,start;

that produces the following result:

+----------+------------+------------+
| CITY | start | end |
+----------+------------+------------+
| ... | ... | ... |
| Genève | ... | ... |
| Grenoble | 2016-02-16 | 2016-03-22 | (a)
| Grenoble | 2016-09-16 | 2016-12-11 | (b)
| Grenoble | 2016-09-16 | 2016-12-29 | (c)
| Grenoble | 2016-12-08 | 2017-04-03 | (d)
| Grenoble | 2016-12-11 | 2016-12-29 | (e)
| Grenoble | 2016-12-29 | 9999-12-31 | (f)
| Grenoble | 2017-04-03 | 9999-12-31 | (g)
| Lille | ... | ... | (h)
| ... | ... | ... |
+----------+------------+------------+

If we read these rows sequentially, we get the rows of each city in chronological
order, that is, in increasing (actually not decreasing) values of the start column. Let
us focus on city Grenoble, for which we read the successive rows. We reason as
follows:

– When we read row (a), we identify the first state of a MSICOS and we memo-
rize it as its tentative reduction [Grenoble, 2016-02-16, 2016-03-22).

– We read row (b). We observe that its start value (2016-09-16) is greater than the
end value of the current reduction (2016-03-22). This means that we encounter
a gap that closes the current MSICOS. So, (Grenoble, 2016-02-16, 2016-03-22)
is the (trivial) reduction of the current MSICOS and belongs to the projection
we are computing. Row (b) becomes the first row of the next MSICOS. We
initialize the new current reduction to (Grenoble, 2016-09-16, 2016-12-11).

– We read row (c). Since its start value (2016-09-16) is lower than the end value
of the current reduction (2016-12-11), this row extends the latter. So, we modify
the current reduction to (Grenoble, 2016-09-16, 2016-12-29). So far, rows (b)
and (c) have been reduced.

– Successively reading rows (d), (e), (f) and (g) leads us to the same observation,
each one extending the current reduction. At this point, the current MSICOS is
formed with rows (b) to (g) and its current reduction is (Grenoble, 2016-09-
16, 9999-12-31).

– Reading next row (h) gives us a different value of CITY. This closes the current
MSICOS, confirms the current reduction (Grenoble, 2016-09-16, 9999-12-31)
and starts a new MSICOS.

22 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

When all the source rows have been read, the projection of H_EMPLOYEE on
column CITY looks like:

+----------+------------+------------+
| CITY | start | end |
+----------+------------+------------+
...
Genève
Grenoble	2016-02-16	2016-03-22
Grenoble	2016-09-16	9999-12-31
Lille
...
+----------+------------+------------+

Translating this iterative algorithm in SQLfast is straightforward (Script 10.23).
Tuple (city, sta, end) represents the new row that has just been read and tuple
(curCity, curSta, curEnd) stores the current state of the reduction. The blue section is
the core of the procedure. It checks whether the new row extends the reduction or if
it closes it.

Script 10.23 - SQLfast procedure that stores in table H_CITY the projection of
H_EMPLOYEE on column CITY

As with most scripting languages, iterative scripts written in SQLfast may be slow
when running against large temporal tables. For this reason, the SQLfast distribution
includes a Python library (LTemp.py) offering a series of efficient functions that
process temporal data.

create temp table H_CITY(City char(10),start date,end date);

set first = 1;
for city,sta,end = [select CITY,start,end
 from H_EMPLOYEE
 order by CITY,start];
 if ($first$);
 set curCity,curSta,curEnd = $city$,sta,end;
 set first = 0;
 else;
 if ('$city$' = '$curCity$' and 'sta' <= '$curEnd$');
 if ('end' > '$curEnd$') set curEnd = end;
 else;
 insert into H_CITY
 values ('$curCity$','$curSta$','$curEnd$');
 set curCity,curSta,curEnd = $city$,sta,end;
 endif;
 endif;
endfor;

if (not $first$)
 insert into H_CITY
 values ('$curCity$','$curSta$','$curEnd$');

23

Printed 29/8/19

From this library, function project computes the projection of a source table on a
list of columns and stores the result in a target table. The arguments of this function
are expressed as a query in an SQL-like mini-language. For example, the projection
computed by Scripts 10.22 and 10.23 can be described by expression:

select CITY from H_EMPLOYEE into H_CITY

A where clause can also be specified:

select CITY from H_EMPLOYEE where SALARY > 6000 into H_CITY

This function is used as shown in Script 10.24.6

Script 10.24 - Using function project from library LTemp

A simplified version of this function, called reduce,7 modifies the source table itself
by reducing its MSICOS. Script 10.25 shows how it can be used to return the projec-
tion of H_EMPLOYEE on column CITY. It is useful notably to reduce intermediate
results in complex temporal data processing, for instance when computing aggre-
gates, as we will see later.

Script 10.25 - Using function reduce from library LTemp

10.9 Temporal join

In non temporal databases, joining tables, that is, applying a join operator, is the
most common way to combine data from several tables. For example, extending the
data of current employees with the theme of the project they are working on will be
performed by joining views EMPLOYEE and PROJECT (Script 10.26).

6. Result status can be ignored, so that we can also write:
function LTemp:project {select CITY from H_EMPLOYEE into H_CITY}

function status = LTemp:project
 {select CITY from H_EMPLOYEE into H_CITY};
if ($status$ = 0) select * from H_CITY;

7. Reminder: the standard name of the reduce operator in the vocabulary of temporal databases,
is coalesce.

create temp table H_CITY as
 select CITY,start,end from H_EMPLOYEE where SALARY > 6000;

function status = LTemp:reduce {select CITY from H_CITY};
if ($status$ = 0) select * from H_CITY;

24 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Script 10.26 - Two common forms for joining non temporal tables

These forms of join produce the same result:

+------+-----------+-----------+------------------+
| CODE | NAME | PROJECT | THEME |
+------+-----------+-----------+------------------+
C45	Carlier	BIOTECH	Biotechnology
A237	Antoine	AGRO-2000	Crop improvement
M158	Mercier	BIOTECH	Biotechnology
D107	Delecourt	BIOTECH	Biotechnology
G96	Godin	AGRO-2000	Crop improvement
+------+-----------+-----------+------------------+

Just like for the projection, studying the join operator between temporal tables starts
with a naive trial (10.27).

Script 10.27 - Joining temporal tables H_EMPLOYEE and H_PROJECT - First trial

The result below shows that the result is wrong. Since employees at each instant of
their life worked on a project, the result must include at least one row for each
employee state, which is not the case.

+------+----------+-----------+------------------+------------+------------+
| CODE | NAME | PROJECT | THEME | start | end |
+------+----------+-----------+------------------+------------+------------+
D122	Declercq	BIOTECH	Genetic engi[..]	2015-06-15	2016-03-21
A68	Albert	SURVEYOR	Satellite mo[..]	2015-10-30	2016-10-22
M158	Mercier	SURVEYOR	Satellite mo[..]	2015-10-30	2017-01-14
C45	Carlier	AGRO-2000	Crop improve[..]	2016-08-31	2016-12-11
G96	Godin	AGRO-2000	Crop improve[..]	2016-08-31	2016-12-11
+------+----------+-----------+------------------+------------+------------+

This query clearly does not work as intended. Rows from both tables are joined on
the basis of rare and independent events: when a change of state of an employee
accidently coincides with an unrelated change of state of his project.

select CODE,NAME,E.PROJECT,THEME
from EMPLOYEE E,PROJECT P
where E.PROJECT = P.TITLE;

select CODE,NAME,E.PROJECT,THEME
from EMPLOYEE E join PROJECT P
 on (E.PROJECT = P.TITLE);

select CODE,NAME,E.PROJECT,THEME,E.start,E.end
from H_EMPLOYEE E,H_PROJECT P
where E.PROJECT = P.TITLE
and E.start = P.start;

25

Printed 29/8/19

Let us solve a simple example of what we expect when joining both tables. First,
we consider state [2015-02-21, 2015-10-30] of employee M158 (Mercier, then living
in Paris):

+------+---------+-------+----------+------------+------------+
| CODE | NAME | CITY | PROJECT | start | end |
+------+---------+-------+----------+------------+------------+
| M158 | Mercier | Paris | BIOTECH | 2015-02-21 | 2015-10-30 |
+------+---------+-------+----------+------------+------------+

The interval of this state overlap with the interval of several states of table
H_PROJECT. So, we conclude that this state references, not one state of
H_PROJECT, as is the rule in non temporal data, but all the states of H_PROJECT
whose interval overlaps with that of M158 employee state. They are easy to identify:

+---------+-----------------+--------+------------+------------+
| TITLE | THEME | BUDGET | start | end |
+---------+-----------------+--------+------------+------------+
BIOTECH	Biotechnology	180000	2014-11-18	2015-02-27
BIOTECH	Genetic eng[..]	160000	2015-02-27	2015-06-15
BIOTECH	Genetic eng[..]	120000	2015-06-15	2016-08-23
+---------+-----------------+--------+------------+------------+

Joining these rows produces the expected result:

+------+---------+----+---------+----+------------+------------+
| CODE | NAME | .. | PROJECT | .. | start | end |
+------+---------+----+---------+----+------------+------------+
M158	Mercier	..	BIOTECH	..	2015-02-21	2015-02-27
M158	Mercier	..	BIOTECH	..	2015-02-27	2015-06-15
M158	Mercier	..	BIOTECH	..	2015-06-15	2015-10-30
+------+---------+----+---------+----+------------+------------+

The reasoning can be represented graphically as shown in Figure 10.9.

Figure 10.9 - Joining state E of table E_EMPLOYEE with overlapping states P1, P2,
P3 of table H_PROJECT

We observe that the intervals of the first and last H_PROJECT states have been
reduced to align them to the interval of H_EMPLOYEE, an operation called interval
clipping.

Translating these operations into an SQL query is fairly easy (Script 10.28).

P1 P2 P3

EP1

E

EP2 EP3

states of project BIOTECH:

state of employee M158:

joining these states:

26 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Script 10.28 - Temporal join of H_EMPLOYEE with H_PROJECT

Script 10.29 expresses the extraction of a snapshot from the join.

Script 10.29 - Snapshot of the temporal join of H_EMPLOYEE with H_PROJECT

+------+----------+----------+----------------------+
| CODE | NAME | PROJECT | THEME |
+------+----------+----------+----------------------+
G96	Godin	BIOTECH	Genetic engineering
D122	Declercq	BIOTECH	Genetic engineering
C45	Carlier	BIOTECH	Genetic engineering
A68	Albert	SURVEYOR	Satellite monitoring
M158	Mercier	SURVEYOR	Satellite monitoring
+------+----------+----------+----------------------+

A more elegant (and reusable) translation of this snapshot is shown in Script 10.30.
It defines the view that expresses the join then extracts the snapshot from this view.

Script 10.30 - View-based snapshot of the temporal join of H_EMPLOYEE with
H_PROJECT

select CODE,NAME,PROJECT,THEME,
 max(P.start,E.start) as "start",
 min(P.end,E.end) as "end"
from H_EMPLOYEE E, H_PROJECT P
where E.PROJECT = P.TITLE
and P.start < E.end and E.start < P.end;

set T = 2016-01-01;
select CODE,NAME,PROJECT,THEME
from (select CODE,NAME,PROJECT,THEME,
 max(P.start,E.start) as "Start",
 min(P.end,E.end) as "End"
 from H_EMPLOYEE E, H_PROJECT P
 where E.PROJECT = P.TITLE
 and P.start < E.end and E.start < P.end)
where "Start" <= 'T' and 'T' < "End";

create view H_EMP_PROJ(CODE,NAME,PROJECT,THEME,start,end) as
 select CODE,NAME,PROJECT,THEME,
 max(P.start,E.start), min(P.end,E.end)
 from H_EMPLOYEE E, H_PROJECT P
 where E.PROJECT = P.TITLE
 and (P.start < E.end) and (E.start < P.end);

select CODE,NAME,PROJECT,THEME
from H_EMP_PROJ
where start <= 'T' and 'T' < end;

27

Printed 29/8/19

If this view is used in this query only, expressing it as a Common Table Expression
(CTE) could be more appropriate.

10.10 Temporal outer join

Let us consider two tables resulting from the projection of table H_EMPLOYEE:

– table H_EMP1 comprises the projection of H_EMPLOYEE on columns CODE,
NAME and CITY ,

– table H_EMP2 comprises the projection of H_EMPLOYEE on columns CODE,
SALARY and PROJECT.

Each column of the source table is included in one of these table, except CODE, the
entity primary key, which is included in both.

We could think that tables H_EMP1 and H_EMP2 are equivalent to table
H_EMPLOYEE, that is, that joining the projections will produce the exact contents of
H_EMPLOYEE. So, we could get rid of H_EMPLOYEE and replace it with H_EMP1
and H_EMP2, since, if needed, we always could rebuild H_EMPLOYEE.

This is true under two strict conditions:

– CODE is the entity primary key in each table8,

– for each state in H_EMP1 with interval v1, there exists in H_EMP2 a sequence
of contiguous states with the same value of CODE that covers v1, and
conversely.

Said in other ways,

– column CODE in each of these tables is a temporal foreign key to the other,

– the temporal projections of these tables on CODE are identical.

The need for outer joins

What would happen if a state is missing in one of the tables, H_EMP2 for example
(see Section 10.8.2)? Simple: some of the matching state(s) in the other table
(H_EMP1) will be lost in the join. This would be the case, for example, if, in some
states of the source table, both SALARY and PROJECT are null while columns NAME
and/or CITY are not null. These states in H_EMPLOYEE would generate states in
H_EMP1 but none in table H_EMP2, leaving gaps in this table. In joining H_EMP1
and H_EMP2 into H_EMP12, we clearly lose information, so that H_EMP12 and
H_EMPLOYEE no longer are equivalent.

In non temporal databases, this problem can be solved with a variant of the join
operator named outer join. When joining two tables T1 and T2, a missing row in

8. More generally, CODE is a unique key in each snapshot of these tables.

28 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

table T2 is replaced by null values, therefore preserving the data of T1. Reading the
join arguments from left to right, this form is called left outer join. If the missing
rows are in T1, we name it right outer join. If both tables may have missing rows,
the operator is a full outer join. In the relational model, the ordinary join is more
precisely called inner join, as opposed to expression outer join.

Temporal outer join: description

To study the outer join operator applied to temporal data, we consider temporal
tables PRO and EMP of Figure 10.10. They are reduced versions of tables
H_PROJECT and H_EMPLOYEE studied so far. Table PRO describes projects 'p1'
and 'p2' while table EMP describes the evolution of employees 'e1' and 'e2'.
Columns ProID and EmpID are entity primary keys of their respective tables. Column
Proj of EMP is a foreign key to table PRO.

table PRO table EMP
+-------+------+------+-------+-----+ +-------+-----+------+-------+-----+
| ProID | Name | Budg | start | end | | EmpID | Sal | Proj | start | end |
+-------+------+------+-------+-----+ +-------+-----+------+-------+-----+
p1	bio	120	2	4		e1	10	p1	1	3
p1	bio	105	6	9		e1	12	p1	3	5
p1	bio	130	10	12		e1	15	p1	6	7
p1	bio	142	12	13		e1	16	p1	8	11
p2	tec	125	3	5		e2	12	p1	3	6
p2	tec	130	5	8		e2	15	p2	7	10
p2	tec	142	10	12		e2	16	p2	11	12
+-------+------+------+-------+-----+ +-------+-----+------+-------+-----+

Figure 10.10 - The two source temporal tables to study the outer join operator

The states of these tables are fairly chaotic: the history of each table is incomplete,
and even incorrect: several states are missing and referential integrity is violated.
Some PRO states do not match any EMP state while some EMP states do not match
PRO states. The idiosyncrasies of the data are better shown in Figure 10.11. In short,
a good basis to study the join of the table on Proj = ProID!

 1 2 3 4 5 6 7 8 9 10 11 12 13
PRO(p1): | |<---|--->| | |<---|----|--->| |<---|--->|<-->|
EMP(e1.p1): |<---|--->|<---|--->| |<-->| |<---|----|--->| | |
EMP(e2.p1): | | |<---|----|--->| | | | | | | |

PRO(p2): | | |<---|--->|<---|----|--->| | |<---|--->| |
EMP(e1.p2): | | | | | | | | | | | | |
EMP(e2.p2): | | | | | | |<---|----|--->| |<-->| |

Figure 10.11 - The time lines of each PRO entity and its associated EMP entities

As a consequence, a standard temporal join (Figure 10.12) will lose data from both
tables. Figure 10.13 shows that attempting to recover the source data from their
inner join through temporal projection (Figure 10.13) entails the loss of many states.
This is particularly clear in the synthetic view of Figure 10.14.

29

Printed 29/8/19

+-------+-----+-------+------+------+-------+-----+
| EmpID | Sal | ProID | Name | Budg | Start | End |
+-------+-----+-------+------+------+-------+-----+
e1	10	p1	bio	120	2	3
e1	12	p1	bio	120	3	4
e1	15	p1	bio	105	6	7
e1	16	p1	bio	105	8	9
e1	16	p1	bio	130	10	11
e2	12	p1	bio	120	3	4
e2	15	p2	tec	130	7	8
e2	16	p2	tec	142	11	12
+-------+-----+-------+------+------+-------+-----+

Figure 10.12 - Inner join of PRO and EMP on columns ProID = Proj

table PRO table EMP
+-------+------+------+-------+-----+ +-------+-----+------+-------+-----+
| ProID | Name | Budg | start | end | | EmpID | Sal | Proj | start | end |
+-------+------+------+-------+-----+ +-------+-----+------+-------+-----+
p1	bio	120	2	4		e1	10	p1	2	3
p1	bio	105	6	7		e1	12	p1	3	4
p1	bio	105	8	9		e1	15	p1	6	7
p1	bio	130	10	11		e1	16	p1	8	9
p2	tec	130	7	8		e1	16	p1	10	11
p2	tec	142	11	12		e2	12	p1	3	4
+-------+------+------+-------+-----+ | e2 | 15 | p2 | 7 | 8 |
 | e2 | 16 | p2 | 11 | 12 |
 +-------+-----+------+-------+-----+

Figure 10.13 - (Unsuccessful) tentative recovery of source data from their inner join

 1 2 3 4 5 6 7 8 9 10 11 12 13
PRO(p1): | |<---|--->| | |<-->| |<-->| |<-->| | |
EMP(e1.p1): | |<-->|<-->| | |<-->| |<-->| |<-->| | |
EMP(e2.p1): | | |<-->| | | | | | | | | |

PRO(p2): | | | | | | |<-->| | | |<-->| |
EMP(e1.p2): | | | | | | | | | | | | |
EMP(e2.p2): | | | | | | |<-->| | | |<-->| |

Figure 10.14 - The time lines of each PRO entity and its associated EMP entities
derived from the inner join of their tables

Let us now go back to the concept of outer join applied to temporal data.

Considering tables PRO and EMP, in this order, the temporal left outer join
preserves each state p of PRO, extended with the values of EmpID and Sal of each
row of EMP the interval of which overlaps with the interval of p. When no row
matches in EMP, p is extended with null values. Figure 10.15 shows the result of the
left outer join of PRO with EMP. We observe that all states of PRO are preserved,
sometimes complemented by null values when no matching state has been found in
EMP.

30 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

+-------+------+------+-------+-----+-------+-----+
| ProID | Name | Budg | EmpID | Sal | Start | End |
+-------+------+------+-------+-----+-------+-----+
p1	bio	105	--	--	7	8
p1	bio	130	--	--	11	12
p1	bio	142	--	--	12	13
p1	bio	120	e1	10	2	3
p1	bio	120	e1	12	3	4
p1	bio	105	e1	15	6	7
p1	bio	105	e1	16	8	9
p1	bio	130	e1	16	10	11
p1	bio	120	e2	12	3	4
p2	tec	125	--	--	3	5
p2	tec	130	--	--	5	7
p2	tec	142	--	--	10	11
p2	tec	130	e2	15	7	8
p2	tec	142	e2	16	11	12
+-------+------+------+-------+-----+-------+-----+

Figure 10.15 - Left outer join of PRO with EMP on columns ProID = Proj

The right outer join of PRO with EMP, that preserves all the states of EMP, is built
similarly. The full outer join preserves the data of both source tables. Its result is
shown in Figures 10.16. It can be computed as the union of the results of the left and
right outer joins.

+-------+------+------+-------+-----+-------+-----+
| ProID | Name | Budg | EmpID | Sal | Start | End |
+-------+------+------+-------+-----+-------+-----+
p1	bio	105	--	--	7	8
p1	bio	130	--	--	11	12
p1	bio	142	--	--	12	13
p1	--	--	e1	10	1	2
p1	bio	120	e1	10	2	3
p1	bio	120	e1	12	3	4
p1	--	--	e1	12	4	5
p1	bio	105	e1	15	6	7
p1	bio	105	e1	16	8	9
p1	--	--	e1	16	9	10
p1	bio	130	e1	16	10	11
p1	bio	120	e2	12	3	4
p1	--	--	e2	12	4	6
p2	tec	125	--	--	3	5
p2	tec	130	--	--	5	7
p2	tec	142	--	--	10	11
p2	tec	130	e2	15	7	8
p2	--	--	e2	15	8	10
p2	tec	142	e2	16	11	12
+-------+------+------+-------+-----+-------+-----+

Figure 10.16 - Full outer join of PRO with EMP on columns ProID = Proj

Implementing temporal outer joins

Now, we have to find an algorithm that computes the left outer join of PRO and EMP
based on the observations we made here above. To this aim, we will apply a well
known problem solving strategy: transforming our problem into another one
already solved.

31

Printed 29/8/19

The examination of EMP shows a set of missing intervals wrt of PRO. An interval
(t1,t2) is called missing in EMP wrt project entity p if:

– (t1,t2) exists in PRO for p,

– there no consecutive states in EMP for which Proj = p and the intervals of which
cover (t1,t2).

The missing interval of EMP wrt PRO are represented in red in Figure 10.17. The
history of project p1 has no matching states in EMP for intervals [7,8) and [11,13). So,
they are the four missing intervals of EMP.

In an inner join, these intervals will lead to the loss of the matching intervals in
PRO, and in a left outer join, they will complement the states of PRO with null
values.

 1 2 3 4 5 6 7 8 9 10 11 12 13
PRO(p1): | |<---|--->| | |<---|----|--->| |<---|--->|<-->|
EMP(e1.p1): |<---|--->|<---|--->| |<-->|<..>|<---|----|--->|<...|...>|
EMP(e2.p1): | | |<---|----|--->| |<..>| | | |<...|...>|

PRO(p2): | | |<---|--->|<---|----|--->| | |<---|--->| |
EMP(e1.p2): | | |<...|....|....|...>| | | |<..>| | |
EMP(e2.p2): | | |<...|....|....|...>|<---|----|--->|<..>|<-->| |

Figure 10.17 - Identifying missing intervals in the time lines of each PRO entity and of
its associated EMP entities

Let us fill them with null values. Figure 10.18 shows the contents of table EMP in
which we have inserted, for each missing interval, a row made of null values for
columns EmpID and Sal.

+-------+-----+------+-------+-----+
| EmpID | Sal | Proj | start | end |
+-------+-----+------+-------+-----+
e1	10	p1	1	3
e1	12	p1	3	5
e2	12	p1	3	6
e1	15	p1	6	7
--	--	p1	7	8
e1	16	p1	8	11
--	--	p1	11	13
--	--	p2	3	7
e2	15	p2	7	10
--	--	p2	10	11
e2	16	p2	11	12
+-------+-----+------+-------+-----+

Figure 10.18 - Table EMP complemented with null missing intervals wrt PRO

This modified table EMP is just a transient working data set. It is incorrect since it
violates the primary key and not null constraints. However it exhibits an interesting
property: it constitutes a complete history of employees. This means that each state
of PRO will match with at least one state in modified EMP. This has an important
consequence: the left outer join of PRO with EMP can be computed through a simple
inner join.

32 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

The missing states are computed and stored in table EMP_MISSING by Script
10.31, then added to the source states to constitute table EMP_COMPLETED (Script
10.32).

Script 10.31 - Generating the missing states of source table EMP

Script 10.32 - Table EMP is completed with its missing states

The algorithm that computes the missing intervals is made up of four parts:

– The first part extracts the internal missing intervals, that is, those that consti-
tutes gaps in EMP.

create table EMP_MISSING as
 select EMPa.Proj, null as "EmpID",null as "Sal",
 EMPa.end as Tstart, EMPb.start as Tend
 from EMP EMPa, EMP EMPb
 where EMPa.Proj = EMPb.Proj
 and EMPa.end < EMPb.start
 and not exists (select *
 from EMP EMPc
 where EMPc.Proj = EMPa.Proj
 and EMPc.start < EMPb.start
 and EMPa.end < EMPc.end)
 union
 select EMP.Proj,null,null,
 min(PRO.start) as Tstart,min(EMP.start) as Tend
 from PRO, EMP
 where PRO.ProID = EMP.Proj
 group by EMP.Proj
 having Tstart < Tend
 union
 select EMP.Proj,null,null,
 max(EMP.end) as Tstart,max(PRO.end) as Tend
 from PRO, EMP
 where PRO.ProID = EMP.Proj
 group by EMP.Proj
 having Tstart < Tend
 union
 select null as EmpID,null as Sal,ProID as Proj,
 min(start) as "start",max(end) as "end"
 from PRO
 where ProID not in (select Proj from EMP)
 group by ProID;

create table EMP_COMPLETED as
 select Proj,EmpID,Sal,start as Tstart,end as Tend from EMP
 union
 select Proj,null,null,Tstart,Tend from EMP_MISSING;

33

Printed 29/8/19

– The second and third parts create left and right external missing intervals when
the history of the current project starts before and/or ends after the series of
states of EMP that reference this project. For instance, the third part creates
missing state [11,13) of project p1 in EMP.

– The fourth part copes with project entities that are not referenced by
employees. A null state is created in EMP for each value of ProID in PRO that
does not appear in column Proj in EMP. By the way, this part also fill empty
table EMP with a null state for each project that will preserve all the states of
PRO.

Finally, a simple inner join of PRO with EMP_COMPLETED produces the desired left
outer join in table LEFT (Script 10.33). A similar procedure will generate the right
outer join in table RIGHT.

Script 10.33 - A simple inner join produces the left outer join of PRO with EMP

The full outer join is computed as the union of LEFT and RIGHT (Script 10.34).

Script 10.34 - Full outer join of PRO and EMP

Computing outer joins with the LTemp library

The completed version of EMP wrt PRO, called above EMP_COMPLETED, can be
more simply (and generally much faster) computed by function normalize of
temporal library LTemp. Its argument is a pseudo-SQL query that specifies the
source table to be completed (EMP), the reference table (PRO), the join condition
(Proj = ProID) and the target table (EMP_COMPLETED).

create table LEFT as
 select PRO.ProID,Name,Budg,EmpID,Sal,
 max(PRO.start,EMPC.Tstart) as "Start",
 min(PRO.end,EMPC.Tend) as "End"
 from PRO, EMP_COMPLETED EMPC
 where PRO.ProID = EMPC.Proj
 and (PRO.start < EMPC.Tend) and (EMPC.Tstart < PRO.end);

select * from LEFT union select * from RIGHT;

34 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Script 10.35 - Computing EMP_COMPLETED through function normalize of library
LTemp

If clause 'wrt PRO' is missing, only internal missing intervals of EMP are added. If
clause 'into EMP_COMPLETED' is missing, the missing intervals are inserted into
table EMP itself. So, the following form is also valid:

function LTemp:normalize {update EMP on Proj};

Reversibility of the outer joins

To convince us that outer joins preserve one or both of their source arguments, just
check that the script below produces the exact contents of table EMP:

function LTemp:project {select EmpID,Sal,ProID from FULL
 into NewEMP};
delete from NewEMP where (EmpID,Sal) is (null,null);

10.11 Temporal aggregation

In general, an aggregation query for a non-temporal table provides a unique quantity
calculated on a set of rows of that table (Script 10.36, top), or for each group of rows
constituted according to a grouping criterion (Script 10.36, bottom). Their results are
shown in Figure 10.19. Let us remind that, according to the SQL standard(s), the
select list (the data elements between key words select and from) may comprise
constants, elements of the grouping criterion and aggregate functions only, as well
as expressions comprising these elements.

Script 10.36 - Aggregation queries on non temporal data

function LTemp:normalize {update EMP wrt PRO on Proj = ProID
 into EMP_COMPLETED};

select sum(BUDGET) as Tbudget
from PROJECT

select PROJECT, count(*) as Nemp
from EMPLOYEE
group by PROJECT;

35

Printed 29/8/19

+---------+ +-----------+------+
| Tbudget | | PROJECT | Nemp |
+---------+ +-----------+------+
| 222000 | | AGRO-2000 | 2 |
+---------+ | BIOTECH | 3 |

+-----------+------+

Figure 10.19 - Aggregated data computed on non temporal data

Querying a snapshots is as easy, since it just is a current state that existed in the past.
The queries of Script 10.37 show the same statistics extracted from the state on
January 1st, 2017 and Figure 10.20 shows the result.

Script 10.37 - Aggregation queries on a snapshot

+---------+ +-----------+------+
| Tbudget | | PROJECT | Nemp |
+---------+ +-----------+------+
| 550000 | | AGRO-2000 | 3 |
+---------+ | BIOTECH | 1 |

| SURVEYOR | 4 |
+-----------+------+

Figure 10.20 - Aggregated data computed on a snapshot (on 2017-01-01)

This was the easy part. Easy, because we have got rid of the time dimension before
aggregating the data. Now we will cope with this dimension by deriving evolution
data, which will prove a bit more complex, notably because the concept of time-
dependent aggregation is not as easy to define as it seems to be at first glance.

10.11.1 A first simple problem: counting

Let us start with something (seemingly) simple: showing the evolution, from the
creation of a project to now, of the number of employees who worked on this
project. Figure 10.21 shows all the states of H_EMPLOYEE related to project AGRO-
2000, sorted by increasing values of column start.

select sum(BUDGET) as Tbudget
from H_PROJECT
where start <= '2017-01-01' and '2017-01-01' < end;

select PROJECT, count(*) as Nemp
from H_EMPLOYEE
where start <= '2017-01-01' and '2017-01-01' < end
group by PROJECT;

36 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Figure 10.21 - Subset of the H_EMPLOYEE table describing the history of the staff of
project AGRO-2000

In Figure 10.22, we represent graphically the sequence of the states of the employees
who worked (and sometimes still work) on this project.

 2016-08-31 2016-12-11 2017-05-19 2017-08-09
 | 2016-09-16 | 016-12-29 | 017-07-24 | now
 | | | | | | | |
C45: |<--------------->| | | | | |
G96: |<--------------->|<--------------->|<------------------------>|
A237: | |<------>| |<--------------------------------->|
N240: | | | |<------------------------>| |
D122: | | | | |<------>| | |

Figure 10.22 - Graphical representation of the life of the employees who worked on
project AGRO-2000

To make intervals comparable, we split them into smaller intervals during which no
modification occurred for any employee. We call them stable intervals. Now, each
state of an employee can be defined as a sequence of one or more stable intervals.
Since the set of stable intervals is common to all the employees of the project,
counting the number of employees in each of these intervals is straightforward, as
shown in figure 10.23.

 2016-08-31 2016-12-11 2017-05-19 2017-08-09
 | 2016-09-16 | 016-12-29 | 017-07-24 | now
 | | | | | | | |
C45: |<------>|<------>| | | | | |
G96: |<------>|<------>|<------>|<------>|<------>|<------>|<------>|
A237: | |<------>| |<------>|<------>|<------>|<------>|
N240: | | | |<------>|<------>|<------>| |
D122: | | | | |<------>| | |

Number: | 2 | 3 | 1 | 3 | 4 | 3 | 2 |

Figure 10.23 - Expressing employee states as a sequence of stable intervals

37

Printed 29/8/19

Hence the result we are looking for (Figure 10.24).

+-----------+--------+------------+------------+
| PROJECT | Number | Start | End |
+-----------+--------+------------+------------+
AGRO-2000	2	2016-08-31	2016-09-16
AGRO-2000	3	2016-09-16	2016-12-11
AGRO-2000	1	2016-12-11	2016-12-29
AGRO-2000	3	2016-12-29	2017-05-19
AGRO-2000	4	2017-05-19	2017-07-24
AGRO-2000	3	2017-07-24	2017-08-09
AGRO-2000	2	2017-08-09	9999-12-31
+-----------+--------+------------+------------+

Figure 10.24 - Evolution of the number of employees in project AGRO-2000

What this small example does not show is that two (or more) successive stable inter-
vals may produce the same statistics. For instance, when, at the same date, an
employee leaves a project while this project hires a new employee. In such a case we
reduce this result by merging such value-equivalent states.

Now, we must implement these reasonings into SQL statements. Clearly, we must
proceed in four steps:

– extracting all the events affecting the employees,

– creating the stable intervals,

– counting the number of employees in each stable interval

– and reducing value-equivalent stable interval.

a) Extracting all the events affecting the employees

Each event (i.e., data modification) generates a time point, which generally closes
the current state and starts a new one, in which case this time point appears as both
start and end values in two states. Except of course the first and last events of a series
of successive states, which appear in a single state. To collect these time points, we
just extract all the start and end values, without duplicates. Script 10.38 stores them
in temporary table EVENT.

Script 10.38 - Extracting the time points of table T_EMPLOYEE

The contents of this table looks like:

create temp table EVENT as
 select PROJECT,Instant
 from (select PROJECT,start as Instant from H_EMPLOYEE
 union
 select PROJECT,end as Instant from H_EMPLOYEE);

38 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

+-----------+------------+
| PROJECT | Instant |
+-----------+------------+
AGRO-2000	2016-08-31
AGRO-2000	2016-09-16
AGRO-2000	2016-12-11
AGRO-2000	2016-12-29
AGRO-2000	2017-05-19
AGRO-2000	2017-07-24
AGRO-2000	2017-08-09
AGRO-2000	9999-12-31
BIOTECH	2014-11-23
...	...
+-----------+------------+

b) Creating the stable intervals

From table EVENT, we derive the stable intervals. Conceptually, the process is
simple: with each event E, we associate the lowest Instant value among all the values
greater than that of E. An SQL translation is proposed in Script 10.39, followed by
the contents of table STABLE_INTERVAL.

The way these intervals are built produces a complete normalized history, even
though some intervals may have no value, for instance due to the fact that no project
has any employee during them.

Script 10.39 - Building the stable intervals from table EVENT

+-----------+------------+------------+
| PROJECT | Start | End |
+-----------+------------+------------+
AGRO-2000	2016-08-31	2016-09-16
AGRO-2000	2016-09-16	2016-12-11
AGRO-2000	2016-12-11	2016-12-29
AGRO-2000	2016-12-29	2017-05-19
AGRO-2000	2017-05-19	2017-07-24
AGRO-2000	2017-07-24	2017-08-09
AGRO-2000	2017-08-09	9999-12-31
BIOTECH	2014-11-23	2014-12-04
...
+-----------+------------+------------+

Figure 10.25 - The stable intervals of project AGRO-2000

create temp table STABLE_INTERVAL as
 select PROJECT,
 Instant as Start,
 (select min(Instant)
 from EVENT
 where PROJECT = E.PROJECT
 and Instant > E.Instant) as End
 from EVENT E
 where End is not null;

39

Printed 29/8/19

c) Counting the number of states in each stable interval

Now, we must split the states of H_EMPLOYEE according to the stable intervals
computed in table STABLE_INTERVAL to produce the eighteen interval instances of
Figure 10.23. For this, we associate with each stable interval all the states of
H_EMPLOYEE with which they overlap. This typically is obtained by a temporal
join (Script 10.40).

Script 10.40 - Computing the stable intervals of E_EMPLOYEE

The contents of this view is shown below. Each row represents the contribution of
one employee to a stable interval. This could be shown by adding E.CODE to the
select list of the query.

+-----------+------------+------------+
| PROJECT | Start | End |
+-----------+------------+------------+
AGRO-2000	2016-08-31	2016-09-16
AGRO-2000	2016-08-31	2016-09-16
AGRO-2000	2016-09-16	2016-12-11
AGRO-2000	2016-09-16	2016-12-11
AGRO-2000	2016-09-16	2016-12-11
AGRO-2000	2016-12-11	2016-12-29
AGRO-2000	2016-12-29	2017-05-19
AGRO-2000	2016-12-29	2017-05-19
AGRO-2000	2016-12-29	2017-05-19
AGRO-2000	2017-05-19	2017-07-24
AGRO-2000	2017-05-19	2017-07-24
AGRO-2000	2017-05-19	2017-07-24
AGRO-2000	2017-05-19	2017-07-24
AGRO-2000	2017-07-24	2017-08-09
AGRO-2000	2017-07-24	2017-08-09
AGRO-2000	2017-07-24	2017-08-09
AGRO-2000	2017-08-09	9999-12-31
AGRO-2000	2017-08-09	9999-12-31
BIOTECH	2014-11-23	2014-12-04
...
+-----------+------------+------------+

Finally, applying the aggregate function is quite easy, since it is nothing more than a
standard, non temporal, computation (Script 10.41).

create temp view STABLE_EMPLOYEE as
 select S.PROJECT,S.start,S.end
 from STABLE_INTERVAL S, H_EMPLOYEE E
 where E.PROJECT = S.PROJECT
 and E.start <= S.start and S.start < E.end;

40 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Script 10.41 - Finally, computing the evolution of the number of employees per project

The result is that of Figure 10.24. By developing the reference of the view in this
query by its definition, we obtain the synthetic query of Script 10.42.

Script 10.42 - computing the evolution of the number of employees per project -
Synthetic query

d) Reducing value-equivalent stable intervals

Consecutive value-equivalent states are merged through the reduce function (Script
10.43).

Script 10.43 - Reducing value-equivalent states

10.11.2 Value-based statistics: avg, max and min

Counting states was an excellent exercise to help us solve more complex statistics.
Let us start with avg, min and max aggregation functions.

We intend to compute the evolution of the average, minimum and maximum
salary for each project. As we did for counting the employees, we start with table
STABLE_INTERVAL (Script 10.39 and Figure 10.25). We know that, by construc-
tion, the salary of employees never changed during any of those stable interval. So,
we can add its unique salary to each interval to form view VALUED_
STABLE_INTERVAL (Script 10.44).

select PROJECT,count(*) as Number,start,end
from STABLE_EMPLOYEE
group by PROJECT,start,end;

create temp table E_COUNT(PROJECT,Number,Start,End) as
 select S.PROJECT,count(*),S.start,S.end
 from H_EMPLOYEE E, STABLE_INTERVAL S
 where E.PROJECT = S.PROJECT
 and E.start <= S.start and S.start < E.end
 group by S.PROJECT,S.start,S.end;

function LTemp:reduce {select PROJECT,Number from E_COUNT};

41

Printed 29/8/19

Script 10.44 - Adding the salary value to each stable interval of E_EMPLOYEE

The contents of this view is shown in Figure 10.26 and is graphically represented in
Figure 10.27.

+-----------+--------+------------+------------+
| PROJECT | SALARY | Start | End |
+-----------+--------+------------+------------+
AGRO-2000	3400	2016-08-31	2016-09-16
AGRO-2000	3900	2016-08-31	2016-09-16
AGRO-2000	3400	2016-09-16	2016-12-11
AGRO-2000	3900	2016-09-16	2016-12-11
AGRO-2000	4000	2016-09-16	2016-12-11
AGRO-2000	4100	2016-12-11	2016-12-29
AGRO-2000	3700	2016-12-29	2017-05-19
AGRO-2000	3800	2016-12-29	2017-05-19
AGRO-2000	4100	2016-12-29	2017-05-19
AGRO-2000	3700	2017-05-19	2017-07-24
AGRO-2000	3800	2017-05-19	2017-07-24
AGRO-2000	3900	2017-05-19	2017-07-24
AGRO-2000	4100	2017-05-19	2017-07-24
AGRO-2000	3700	2017-07-24	2017-08-09
AGRO-2000	3800	2017-07-24	2017-08-09
AGRO-2000	3900	2017-07-24	2017-08-09
AGRO-2000	3800	2017-08-09	9999-12-31
AGRO-2000	3900	2017-08-09	9999-12-31
BIOTECH
...
+-----------+--------+------------+------------+

Figure 10.26 - The stable intervals of H_EMPLOYEE showing their SALARY values
(tabular view)

 2016-08-31 2016-12-11 2017-05-19 2017-08-09
 | 2016-09-16 | 016-12-29 | 017-07-24 | now
 | | | | | | | |
C45: |<-3400->|<-3400->| | | | | |
G96: |<-3900->|<-3900->|<-4100->|<-4100->|<-3900->|<-3900->|<-3900->|
A237: | |<-4000->| |<-3800->|<-3800->|<-3800->|<-3800->|
N240: | | | |<-3700->|<-3700->|<-3700->| |
D122: | | | | |<-4100->| | |

Average: | 2650 | 3766.7 | 4100 | 3866.7 | 3875 | 3800 | 3850 |
Min: | 3400 | 3400 | 4100 | 3700 | 3700 | 3700 | 3800 |
Max: | 3900 | 4000 | 4100 | 4100 | 4100 | 3900 | 3900 |

Figure 10.27 - The stable intervals of H_EMPLOYEE showing their SALARY values
(graphical view)

create temp view VALUED_STABLE_INTERVAL as
 select S.PROJECT,E.SALARY,S.start,S.end
 from STABLE_INTERVAL S, H_EMPLOYEE E
 where E.PROJECT = S.PROJECT
 and E.start <= S.start and S.start < E.end;

42 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Computing the standard statistics (average, minimum, maximum) of SALARY in
each stable state is just child's play (Script 10.45).

Script 10.45 - Computing standard statistics of the stable interval of H_EMPLOYEE

After reducing the value-equivalent intervals, we get this result:

+-----------+---------+------+------+------------+------------+
| PROJECT | Average | Min | Max | Start | End |
+-----------+---------+------+------+------------+------------+
AGRO-2000	3650.0	3400	3900	2016-08-31	2016-09-16
AGRO-2000	3766.7	3400	4000	2016-09-16	2016-12-11
AGRO-2000	4100.0	4100	4100	2016-12-11	2016-12-29
AGRO-2000	3866.7	3700	4100	2016-12-29	2017-05-19
AGRO-2000	3875.0	3700	4100	2017-05-19	2017-07-24
AGRO-2000	3800.0	3700	3900	2017-07-24	2017-08-09
AGRO-2000	3850.0	3800	3900	2017-08-09	9999-12-31
BIOTECH
...
+-----------+---------+------+------+------------+------------+

10.11.3 Value-based statistics: sum

This last exercise is a bit more complex because it involves the length of the inter-
vals. Still considering view VALUED_STABLE_INTERVAL (and Figure 10.27), we
would like to know the total salary cost of each interval. Adding expression
sum(SALARY) to query 10.45 is useless for two reasons: the cost we are looking for
depends on the number of days in each interval and SALARY is a monthly salary.

– The number of days in interval [d1,d2) is given by function duration-
Days(d1,d2). So, the length of an interval is obtained by expression dura-
tionDays(start,end). However, this does not work for current states, for
which end = '9999-12-31'. Replacing end with the current date ($date$) is also
not satisfactory since its value changes from day to day, leading to unstable
lengths. In such case, we suggest to replace end by the more realistic constant
maxValue, computed as the highest end date of H_EMPLOYEE + 100 days:

 extract maxDate = select addToDate(max(end),100)
 from H_EMPLOYEE
 where end < '$Tfuture$';

 The length of interval [start,end) will then be computed by expression:

 durationDays(start,min(end,'$maxDate$'))

select PROJECT,
 round(avg(SALARY),1) as Average,
 min(SALARY) as Min,
 max(SALARY) as Max,Start,End
from VALUED_STABLE_INTERVAL
group by PROJECT,Start,End;

43

Printed 29/8/19

– Converting a monthly salary into a daily salary is a bit tricky. Indeed, months
have different lengths but cost all the same salary, so that we are forced to work
with some kind of average daily salary. On the average, in one year, 1 month
comprises 365/12 = 30.4167 days. Let them be rounded to 30.42 days for this
exercise.

Therefore, the salary cost of interval [start,end) is computed by expression:

 SALARY/30.42*durationDays(start,min(end,'$maxDate$'))

The correct solution is shown in Script 10.46. Its result is shown in Figure 10.28,
where TCost has been rounded to one decimal (round() function not shown).

Script 10.46 - Computing the total salary cost of each stable interval

+-----------+---------+------------+------------+
| PROJECT | TCost | Start | End |
+-----------+---------+------------+------------+
AGRO-2000	3839.6	2016-08-31	2016-09-16
AGRO-2000	31946.1	2016-09-16	2016-12-11
AGRO-2000	2426.0	2016-12-11	2016-12-29
AGRO-2000	53767.3	2016-12-29	2017-05-19
AGRO-2000	33629.2	2017-05-19	2017-07-24
AGRO-2000	5996.1	2017-07-24	2017-08-09
AGRO-2000	25312.3	2017-08-09	9999-12-31
BIOTECH
...
+-----------+---------+------------+------------+

Figure 10.28 - Salary cost of stable intervals

The same query, slightly modified, will compute the total salary cost (so far) of each
project (Script 10.47).

Script 10.47 - Computing the total salary cost of each project

select PROJECT,
 sum(SALARY/30.42 *
 durationDays(Start,min(End,'$maxDate$'))) as TCost,
 Start,End
from VALUED_STABLE_INTERVAL
group by PROJECT,Start,End;

select PROJECT,
 sum(SALARY/30.42 *
 durationDays(Start,min(End,'$maxDate$'))) as TCost
from VALUED_STABLE_INTERVAL
group by PROJECT;

44 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

+-----------+----------+
| PROJECT | TCost |
+-----------+----------+
AGRO-2000	156916.5
BIOTECH	280328.7
SURVEYOR	243445.1
+-----------+----------+

10.11.4 Multidimensional statistics

The statistics discussed so far have considered one dimension of employee entities,
namely PROJECT or CITY, that appeared in source table VALUED_STABLE_
INTERVAL. The structure of this table can be formally defined by this pattern9:

 PROJECT,interval →→ SALARY

which tells that a project and an interval together determine a set of salaries, on
which various aggregate functions can be applied. The presentation below of the
data of Figure 10.26 makes this relationship explicit:

+-----------+---------------------+------------+------------+
| PROJECT | SALARY | Start | End |
+-----------+---------------------+------------+------------+
AGRO-2000	3400,3900	2016-08-31	2016-09-16
AGRO-2000	3400,3900,4000	2016-09-16	2016-12-11
AGRO-2000	4100	2016-12-11	2016-12-29
AGRO-2000	3700,3800,4100	2016-12-29	2017-05-19
AGRO-2000	3700,3800,3900,4100	2017-05-19	2017-07-24
AGRO-2000	3700,3800,3900	2017-07-24	2017-08-09
AGRO-2000	3800,3900	2017-08-09	9999-12-31
...
+-----------+---------------------+------------+------------+

This idea can be generalized to grouping criteria comprising more than one column.
For example, let us examine this one:

 PROJECT,CITY,interval →→ SALARY

through which we associate a set of salaries with each couple (PROJECT,CITY),
partitioned by stable intervals. Tables EVENT, STABLE_INTERVAL and VALUED_
STAB LE_INTERVAL are computed accordingly (Script 10.48).

9. Yes, it’s an embedded multivalued dependency, but don’t tell anyone!

create table EVENT as
 select PROJECT,CITY,Instant
 from (select PROJECT,CITY,start as Instant from H_EMPLOYEE
 union
 select PROJECT,CITY,end as Instant from H_EMPLOYEE);

45

Printed 29/8/19

Script 10.48 - Computing interval tables for grouping criterion (PROJECT,CITY)

The contents of VALUED_STABLE_INTERVAL now looks like this (the codes of the
employees have been added for clarity10):

+-----------+----------+------+--------+------------+------------+
| PROJECT | CITY | CODE | SALARY | Start | End |
+-----------+----------+------+--------+------------+------------+
AGRO-2000	Genève	G96	3900	2016-08-31	2016-12-11
AGRO-2000	Genève	G96	4100	2016-12-11	2016-12-29
AGRO-2000	Genève	G96	4100	2016-12-29	2017-05-19
AGRO-2000	Genève	N240	3700	2016-12-29	2017-05-19
AGRO-2000	Genève	G96	3900	2017-05-19	2017-08-09
AGRO-2000	Genève	N240	3700	2017-05-19	2017-08-09
AGRO-2000	Genève	G96	3900	2017-08-09	9999-12-31
AGRO-2000	Grenoble	A237	4000	2016-09-16	2016-12-11
AGRO-2000	Grenoble	A237	3800	2016-12-29	9999-12-31
AGRO-2000	Lille	C45	3400	2016-08-31	2016-12-11
AGRO-2000	Toulouse	D122	4100	2017-05-19	2017-07-24
BIOTECH
+-----------+----------+------+--------+------------+------------+

Figure 10.29 - Contents of table VALUED_STABLE_INTERVAL following pattern
PROJECT,CITY,interval →→ CODE,SALARY

We note that the sequence of stable intervals of cities within AGRO-2000 are inde-
pendent. For instance, interval [2016-09-16,2016-12-11) of (AGRO-2000,Grenoble) is
meaningless for (AGRO-2000,Genève). Each row describes the contribution of one
employee to one stable interval of a city in a project. (AGRO-2000,Genève)
comprises 5 stable intervals with two contributors, G96 and N240. G96 contributes to
5 intervals (5 rows) while N240 appears in 2 intervals (2 rows) for a total of 7 contri-
butions (7 rows).

create table STABLE_INTERVAL as
 select PROJECT,CITY,
 Instant as Start,
 (select min(Instant)
 from EVENT
 where (PROJECT,CITY) = (V.PROJECT,V.CITY)
 and Instant > V.Instant) as End
 from EVENT V
 where End is not null;

create table VALUED_STABLE_INTERVAL as
 select S.PROJECT,S.CITY,E.CODE,E.SALARY,S.Start,S.End
 from STABLE_INTERVAL S,H_EMPLOYEE E
 where (S.PROJECT,S.CITY) = (E.PROJECT,E.CITY)
 and S.Start >= E.start and S.End <= E.end;

10. So that the pattern actually is PROJECT,CITY,interval →→ CODE,SALARY

46 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

The contents of this table, limited to project AGRO-2000, is represented graphi-
cally in Figure 10.30, in which city names have been abbreviated.

 2016-08-31 2016-12-11 2017-05-19 2017-08-09
 | 2016-09-16 | 016-12-29 | 017-07-24 | now
 | | | | | | | |
Gen(G96): |<-3900--|--3900->|<-4100->|<-4100->|<-3900--|--3900->|<-3900->|
Gen(C240): | | | |<-3700->|<-3700--|--3700->| |

Gre(A237): | |<-4000->| |<-3800--|--3800--|--3800--|--3800->|

Lil(C45): |<-3400--|--3400->| | | | | |

Tou(D122): | | | | |<-4100->| | |

Figure 10.30 - Distribution among stable intervals of the H_EMPLOYEE states of the
employees who contributed to project AGRO-2000, grouped by the city of the
contribution

Now, we are ready to query table VALUED_STABLE_INTERVAL. We will examine
how to count, compute average and sums, as we did for unidimensional statistics.

a) Counting employees

Script 10.49 computes the evolution of the number of employees on each project
from each city. It is a natural extension of Script 10.41.

Script 10.49 - computing the evolution of the number of employees per project and
city (reduction not shown)

+-----------+----------+--------+------------+------------+
| PROJECT | CITY | Number | Start | End |
+-----------+----------+--------+------------+------------+
AGRO-2000	Genève	1	2016-08-31	2016-12-29
AGRO-2000	Genève	2	2016-12-29	2017-08-09
AGRO-2000	Genève	1	2017-08-09	2017-12-31
AGRO-2000	Grenoble	1	2016-09-16	2016-12-11
AGRO-2000	Grenoble	1	2016-12-29	2017-12-31
AGRO-2000	Lille	1	2016-08-31	2016-12-11
AGRO-2000	Toulouse	1	2017-05-19	2017-07-24
BIOTECH
...
+-----------+----------+--------+------------+------------+

b) Computing average salaries

In Script 10.50, a natural extension of the query of Script 10.45, we compute the
evolution of the average salary of the employees of each project from each city.

select PROJECT,CITY,count(*) as Number,Start,End
from VALUED_STABLE_INTERVAL
group by PROJECT,CITY,Start,End
order by PROJECT,CITY,Start,end;

47

Printed 29/8/19

Script 10.50 - Computing the average salary in each stable interval of 'AGRO-2000'

+-----------+----------+-----------+---------+------------+------------+
| PROJECT | CITY | Salaries | Average | Start | End |
+-----------+----------+-----------+---------+------------+------------+
AGRO-2000	Genève	3900	3900.0	2016-08-31	2016-12-11
AGRO-2000	Genève	4100	4100.0	2016-12-11	2016-12-29
AGRO-2000	Genève	4100,3700	3900.0	2016-12-29	2017-05-19
AGRO-2000	Genève	3900,3700	3800.0	2017-05-19	2017-08-09
AGRO-2000	Genève	3900	3900.0	2017-08-09	9999-12-31
AGRO-2000	Grenoble	4000	4000.0	2016-09-16	2016-12-11
AGRO-2000	Grenoble	3800	3800.0	2016-12-29	9999-12-31
AGRO-2000	Lille	3400	3400.0	2016-08-31	2016-12-11
AGRO-2000	Toulouse	4100	4100.0	2017-05-19	2017-07-24
BIOTECH
...
+-----------+----------+-----------+---------+------------+------------+

c) Computing total salary costs

Same exercise for the sum statistics. Query 10.51 is an extension of Script 10.46.

Script 10.51 - Computing the evolution of the total salary cost of each stable interval

+-----------+----------+----------+------------+------------+
| PROJECT | CITY | TCost | Start | End |
+-----------+----------+----------+------------+------------+
AGRO-2000	Genève	13042.6	2016-08-31	2016-12-11
AGRO-2000	Genève	2419.7	2016-12-11	2016-12-29
AGRO-2000	Genève	36059.0	2016-12-29	2017-05-19
AGRO-2000	Genève	20432.7	2017-05-19	2017-08-09
AGRO-2000	Genève	74803.3	2017-08-09	9999-12-31
AGRO-2000	Grenoble	11278.7	2016-09-16	2016-12-11
AGRO-2000	Grenoble	100668.9	2016-12-29	9999-12-31
AGRO-2000	Lille	11370.5	2016-08-31	2016-12-11
AGRO-2000	Toulouse	8872.1	2017-05-19	2017-07-24
BIOTECH
...
+-----------+----------+----------+------------+------------+

select PROJECT,CITY,
 group_concat(distinct SALARY) as Salaries,
 round(avg(SALARY),1) as Average,Start,End
from VALUED_STABLE_INTERVAL
group by PROJECT,CITY,Start,End
order by PROJECT,CITY,Start;

select PROJECT,CITY
 sum(SALARY/30.42 *
 durationDays(Start,min(End,'$maxDate$'))) as TCost,
 Start,End
from VALUED_STABLE_INTERVAL
group by PROJECT,CITY,Start,End;

48 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

d) Statistics on a subset of the aggregation criterion

Statistics on non temporal data can also be analyzed through the pattern we used to
describe aggregation criteria and values to aggregate. We can, for instance, derive a
synthetic table (let us call it PC_S_EMPLOYEE) based on this formula, in which the
temporal dimension is discarded:

 PROJECT,CITY →→ SALARY

Such a table can be extracted through this query:

create table PC_S_EMPLOYEE as
select PROJECT,CITY,SALARY
from EMPLOYEE;

The nice feature of this table is that it provides the support of several aggregation
criteria: (PROJECT,CITY) of course, but also its subsets (PROJECT) and (CITY). The
following query is perfectly valid:

select PROJECT,
 count(*) as Number,
 avg(SALARY) as AvgSalary
from PC_S_EMPLOYEE
group by PROJECT;

Unfortunately, this does not work for temporal data!

Temporal table VALUED_STABLE_INTERVAL built by the queries of Script 10.48
does not allow data grouping by PROJECT or CITY alone. Indeed, as the life lines of
Figure 10.30 shows it, the events of, say, (AGRO-2000, Genève) are independent of
(and therefore different from) those of, say, (AGRO-2000, Grenoble). As a conse-
quence, grouping data by PROJECT or CITY alone would be meaningless. The
following query will not provide the evolution of the number of employees in each
project:

select PROJECT,count(*) as Number,Start,End
from VALUED_STABLE_INTERVAL
group by PROJECT,Start,End;

We will address this restriction in the next section.

10.11.5 Temporal data with non-partitioned intervals

The history generated by the procedures developed so far are based on a partition of
the source rows according to one or more columns. This partition is defined by
expressions such as this one:

 PROJECT,CITY,interval →→ SALARY

49

Printed 29/8/19

Each subset of the partition is identified by a couple (p,c) such that H_EMPLOYEE
includes at least one row where PROJECT = p and CITY = c. This subset divides its
time line into successive stable intervals. As we have observed, the divisions of two
subsets do not match, so that they cannot be compared. This is why these stable
intervals cannot be used to derive more coarse statistics such as those defined by
PROJECT,interval →→ SALARY or CITY,interval →→ SALARY.

In this section, we will show how to compute stable intervals common to all the
couples (p,c), that is, a division of the time line synchronous with that of all these
couples. For this, we first create the list of all the events of H_EMPLOYEE, indepen-
dently of any partitioning criterion. We adapt the query of Script 10.38 by removing
the reference to PROJECT (Script 10.52).

Script 10.52 - Extracting the time points of table H_EMPLOYEE

From this table, we build the stable intervals with the algorithm of Script 10.53
(derived from that of Script 10.39).

Script 10.53 - Building the stable intervals from table EVENT

Finally, we complete these intervals with all the values from H_EMPLOYEE that will
be used to compute the desired statistics (Script 10.54).

Script 10.54 - Completing stable intervals with additional data from H_EMPLOYEE

The new state of table VALUED_STABLE_INTERVAL is shown in Figure 10.31
(sorted by PROJECT,CITY,Start). Each row describes the contribution of one
employee to one interval. An employee may contribute to several intervals (poten-

create temp table EVENT as
 select Instant
 from (select start as Instant from H_EMPLOYEE
 union
 select end as Instant from H_EMPLOYEE);

create temp table STABLE_INTERVAL as
 select Instant as Start,
 (select min(Instant)
 from EVENT
 where Instant > E.Instant) as End
 from EVENT E
 where End is not null;

create temp table VALUED_STABLE_INTERVAL as
 select E.CODE,E.SALARY,E.CITY,E.PROJECT,S.Start,S.End
 from STABLE_INTERVAL S, H_EMPLOYEE E
 where E.Start <= S.Start and S.Start < E.End;

50 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

tially with the same values of PROJECT, CITY and SALARY) and an interval may be
contributed by several employees.

+-----------+----------+------+--------+------------+------------+
| PROJECT | CITY | CODE | SALARY | Start | End |
+-----------+----------+------+--------+------------+------------+
AGRO-2000	Genève	G96	3900	2016-08-31	2016-09-16
AGRO-2000	Genève	G96	3900	2016-09-16	2016-10-22
AGRO-2000	Genève	G96	3900	2016-10-22	2016-12-08
AGRO-2000	Genève	G96	3900	2016-12-08	2016-12-11
AGRO-2000	Genève	G96	4100	2016-12-11	2016-12-29
AGRO-2000	Genève	G96	4100	2016-12-29	2017-01-14
AGRO-2000	Genève	N240	3700	2016-12-29	2017-01-14
AGRO-2000	Genève	G96	4100	2017-01-14	2017-04-03
AGRO-2000	Genève	N240	3700	2017-01-14	2017-04-03
AGRO-2000	Genève	G96	4100	2017-04-03	2017-05-19
AGRO-2000	Genève	N240	3700	2017-04-03	2017-05-19
AGRO-2000	Genève	N240	3700	2017-05-19	2017-07-24
AGRO-2000	Genève	G96	3900	2017-05-19	2017-07-24
AGRO-2000	Genève	N240	3700	2017-07-24	2017-08-09
AGRO-2000	Genève	G96	3900	2017-07-24	2017-08-09
AGRO-2000	Genève	G96	3900	2017-08-09	9999-12-31
AGRO-2000	Grenoble	A237	4000	2016-09-16	2016-10-22
...
BIOTECH	Genève	G96	3400	2014-11-23	2014-12-04
BIOTECH	Genève	G96	3400	2014-12-04	2015-01-17
...
BIOTECH	Toulouse	N240	3100	2016-08-18	2016-08-31
BIOTECH	Toulouse	N240	3100	2016-08-31	2016-09-16
SURVEYOR	Genève	D107	4100	2016-03-22	2016-08-18
SURVEYOR	Genève	D107	4100	2016-08-18	2016-08-31
SURVEYOR	Genève	D107	4100	2016-08-31	2016-09-16
SURVEYOR	Genève	D107	4100	2016-09-16	2016-10-22
SURVEYOR	Genève	D107	4100	2016-10-22	2016-12-08
SURVEYOR	Grenoble	D107	3800	2016-02-16	2016-03-21
SURVEYOR	Grenoble	D107	3800	2016-03-21	2016-03-22
SURVEYOR	Grenoble	N240	3700	2016-09-16	2016-10-22
...
SURVEYOR	Toulouse	A68	3700	2016-09-16	2016-10-22
+-----------+----------+------+--------+------------+------------+

Figure 10.31 - Non-partitioned version of VALUED_STABLE_INTERVAL

This single version of VALUED_STABLE_INTERVAL will allow us to compute all the
statistics we have described in the preceding sections.

a) Counting employees

To compute the evolution of the number of employees from each city working on
each project, Script 10.55 first counts them11 in each stable interval, then reduces

11. Since the select list of the query includes column End, the grouping criterion should be
written "group by PROJECT,CITY,Start,End" according to the SQL standard. We have
omitted the End component, which is (illegally) allowed by SQLite (and by MySQL, among
others) for performance reason (the execution is 10 to 15% faster).

51

Printed 29/8/19

value-equivalent intervals. Note that expression count(distinct CODE) can be
more simply written count(*).

Script 10.55 - Computing the evolution of the number of employees in each project
and each city

Script 10.56 - Computing the evolution of the number of employees in each project

Script 10.57 - Computing the evolution of the number of employees in each city

+----------+--------+------------+------------+
| CITY | Number | Start | End |
+----------+--------+------------+------------+
Genève	1	2014-11-23	2016-03-22
Genève	2	2016-03-22	2016-12-08
Genève	1	2016-12-08	2016-12-29
Genève	2	2016-12-29	2017-08-09
Genève	1	2017-08-09	9999-12-31
Grenoble	1	2016-02-16	2016-03-22
Grenoble	2	2016-09-16	2016-12-08
Grenoble	3	2016-12-08	2016-12-29
Grenoble	2	2016-12-29	9999-12-31
Lille	1	2015-08-22	9999-12-31
Paris	1	2014-12-04	2015-06-15
Paris	2	2015-06-15	2016-10-22
Paris	3	2016-10-22	2017-05-19
Paris	1	2017-05-19	9999-12-31
Toulouse	1	2015-06-09	2016-08-18

create temp table H_COUNT as
 select PROJECT,CITY,count(distinct CODE) as Number,Start,End
 from VALUED_STABLE_INTERVAL
 group by PROJECT,CITY,Start;

function LTemp:reduce {select PROJECT,CITY,Number from H_COUNT};

create temp table H_COUNT as
 select PROJECT,count(distinct CODE) as Number,Start,End
 from VALUED_STABLE_INTERVAL
 group by PROJECT,Start;

function LTemp:reduce {select PROJECT,Number from H_COUNT};

create temp table H_COUNT as
 select CITY,count(distinct CODE) as Number,Start,End
 from VALUED_STABLE_INTERVAL
 group by CITY,Start;

function LTemp:reduce {select CITY,Number from H_COUNT};

52 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Toulouse	2	2016-08-18	2016-09-16
Toulouse	1	2016-09-16	2016-10-22
Toulouse	1	2017-05-19	2017-07-24
+----------+--------+------------+------------+

Figure 10.32 - Result of Script 10.57: evolution of the number of employees in each
city

b) Computing average, min and max salaries

The evolution of average, min and max statistics of SALARY values is also derived
from the non-partitioned version of VALUED_STABLE_INTERVAL (Scripts 10.58).

Script 10.58 - Computing the evolution of the main statistics of SALARY

Producing these statistics per project or per city is quite similar.

c) Computing salary costs

Table H_COST sums and records, for each stable interval, the cost of all the emp-
loyees who were active in this interval. It is created by the query of Script 10.59.

Script 10.59 - Computing the salary cost of each stable interval

The evolution of salary cost just requires an appropriate presentation of H_COST
(Script 10.60). In Script 10.61, the values of TCost are summed for each interval of
each project.

create temp table H_AVG_SALARY as
 select PROJECT,CITY,
 round(avg(SALARY),1) as Average,
 min(SALARY) as Min,
 max(SALARY) as Max,Start,End
 from VALUED_STABLE_INTERVAL
 group by PROJECT,CITY,Start;

function LTemp:reduce {select PROJECT,CITY,Average,Min,Max
 from H_AVG_SALARY};

create temp table H_COST as
 select PROJECT,CITY,
 sum(SALARY)/30.42 *
 durationDays(Start,min(End,'$maxDate$'))) as TCost,
 Start,End
 from VALUED_STABLE_INTERVAL
 group by PROJECT,CITY,Start;

53

Printed 29/8/19

Script 10.60 - Evolution of the salary cost of project and city

Script 10.61 - Evolution of the salary cost of each project

By summing the values of TCost for each project and/or each city, we get their total
salary cost (Scripts 10.62 and 10.63). The table of the total cost of each project is
shown in Figure 10.33.

Script 10.62 - Computing the total salary cost of each project in each city

Script 10.63 - Computing the total salary cost of each project

+-----------+-----------+
| PROJECT | TotalCost |
+-----------+-----------+
AGRO-2000	156,917
BIOTECH	280,329
SURVEYOR	243,445
+-----------+-----------+

Figure 10.33 - Total cost of each project (Script 10.63)

10.11.6 Efficient computing of VALUED_STABLE_INTERVAL

The three operations that produce the basic VALUED_STABLE_INTERVAL table
(through Script 10.48) from which we have computed our statistics can prove too

select PROJECT,CITY,round(TCost,1) as "TCost",Start,End
from H_COST
order by PROJECT,CITY,Start;

select PROJECT,round(sum(TCost),1) as "TCost",
 min(Start) as "Start",max(End) as "End"
from H_COST
group by PROJECT,Start;

select PROJECT,CITY,int(sum(TCost)) as TotalCost
from H_COST
group by PROJECT,CITY;

select PROJECT,int(sum(TCost)) as TotalCost
from H_COST
group by PROJECT;

54 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

slow for large temporal table. They can be replaced by function valuedInterval of the
LTemp library, which is both simpler and much faster. The sequence of Script 10.48
can be replaced by Script 10.64, which produces the data of Figure 10.29.

Script 10.64 - Computing VALUED_STABLE_INTERVAL through function
LTemp:valuedInterval

The gain in execution time results mainly from the way the stable intervals are
computed from the EVENT table, through a single scan of this table instead of
executing a self-join particularly expensive.

To produce non-partitionned intervals (Scripts 10.52, 10.53, 10.54), we simply
omit the group by clause (Script 10.65).

Script 10.65 - Computing VALUED_STABLE_INTERVAL for common intervals
through function LTemp:valuedInterval

10.11.7 Temporal data with fixed and unit intervals

In the techniques discussed so far, the stable intervals are naturally derived from the
data themselves. Though the concept of stable interval is intuitive, it does not scale
easily (Section 10.11.4, d) and sometimes leads to non trivial queries. In addition, it
provides synthetic data that are difficult to plot on a timeline due to the uneven
distribution of the time points. Hence the idea to extract statistics based on fixed-
length intervals: seconds, days, months, years, etc.

The algorithm of Script 10.66 generates a table in which each row is assigned to a
day within interval [minDate,maxDate). The day is represented by unit interval
[Start,End), the length of which is the granularity of the time measure (Figure 10.34).

 To generate other fixed-length interval, we replace expression nextDate(D) by
addToDate(D,n), where n is the period. So, addToDate(D,7) will provide
weekly intervals.

function LTemp:valuedInterval
 {select PROJECT,CITY,CODE,SALARY from H_EMPLOYEE
 group by CITY,PROJECT
 into VALUED_STABLE_INTERVAL};

function LTemp:valuedInterval
 {select PROJECT,CITY,CODE,SALARY from H_EMPLOYEE
 into VALUED_STABLE_INTERVAL};

55

Printed 29/8/19

Script 10.66 - Building a daily calendar

This calendar is the ultimate version of STABLE_INTERVAL. Joined with table
H_EMPLOYEE (Script 10.67), it provides a version of VALUED_STABLE_INTERVAL
in which each row describes one day in the life of one employee (Figure 10.35).12

+------------+------------+
| Start | End |
+------------+------------+
2014-11-23	2014-11-24
2014-11-24	2014-11-25
2014-11-25	2014-11-26
2014-11-26	2014-11-27
2014-11-27	2014-11-28
2014-11-28	2014-11-29
2014-11-29	2014-11-30
2014-11-30	2014-12-01
2014-12-01	2014-12-02
...	...
+------------+------------+

Figure 10.34 - A unit (daily) calendar

From now on, we can ignore temporal concerns in aggregation functions and apply
them as we usually do in non-temporal processing. Moreover, the queries will be
more regular. The price to pay is that this table may be quite large. In our case study,
it comprises 6,110 rows instead of 28 in H_EMPLOYEE and 130 in non-partitioned
VALUED_STABLE_INTERVAL.

Script 10.67 - Daily distribution of table H_EMPLOYEE

create temp table CALENDAR(Start date,End date);

with recursive Dates(Start,End)
as (select '$minDate$',nextDate('$minDate$')
 union all
 select D.End, nextDate(D.End) as Last
 from Dates D
 where Last <= '$maxDate$'
)
insert into CALENDAR select * from Dates;

12. Converting a temporal table according to unit intervals is often called unfolding.

create temp table VALUED_STABLE_INTERVAL as
 select E.CODE,E.NAME,E.PROJECT,E.CITY,E.SALARY,C.Start,C.End
 from CALENDAR C,H_EMPLOYEE E
 where C.Start >= E.start
 and C.End <= E.end;

56 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

+-----------+------+-------+--------+--------+------------+------------+
| PROJECT | CODE | NAME | CITY | SALARY | Start | End |
+-----------+------+-------+--------+--------+------------+------------+
AGRO-2000	G96	Godin	Genève	3900	2016-08-31	2016-09-01
AGRO-2000	G96	Godin	Genève	3900	2016-09-01	2016-09-02
AGRO-2000	G96	Godin	Genève	3900	2016-09-02	2016-09-03
AGRO-2000	G96	Godin	Genève	3900	2016-09-03	2016-09-04
AGRO-2000	G96	Godin	Genève	3900	2016-09-04	2016-09-05
AGRO-2000	G96	Godin	Genève	3900	2016-09-05	2016-09-06
...
AGRO-2000	G96	Godin	Genève	4100	2017-03-15	2017-03-16
AGRO-2000	G96	Godin	Genève	4100	2017-03-16	2017-03-17
AGRO-2000	G96	Godin	Genève	4100	2017-03-17	2017-03-18
AGRO-2000	G96	Godin	Genève	4100	2017-03-18	2017-03-19
BIOTECH
...
+-----------+------+-------+--------+--------+------------+------------+

Figure 10.35 - Daily history of employees (table VALUED_STABLE_INTERVAL)

Script 10.68 shows that source table H_EMPLOYEE can be rebuilt from
VALUED_STABLE_INTERVAL. So both tables contain the same information.

Script 10.68 - Reconstructing H_EMPLOYEE from VALUED_STABLE_NTERVAL

This version of VALUED_STABLE_INTERVAL can now be used to compute all the
statistics of the preceding section.

Computing statistics against larger fixed-length intervals, such as weeks or
months may be more complex because these intervals generally do not match those
of source data, and therefore are not stable. Indeed, several stable intervals may
contribute, often partially, to one fixed-length interval. Starting from unit valued
stable intervals makes it easier to aggregate data on larger fixed-length intervals.
Implementing this idea is left as an (easy) exercise to the reader.

A last remark: aggregation based on unit intervals has been called in the literature
Instantaneous temporal aggregation.

10.12 Temporal library LTemp

We have shown the management of all the temporal data models studied in the first
part of this case study and the exploitation of temporal data can be performed
through pure SQL queries. However, this may raise two potential problems:

function LTemp:project
 {select CODE,NAME,SALARY,CITY,PROJECT
 from VALUED_STABLE_INTERVAL into H_EMPLOYEE};

57

Printed 29/8/19

– Some of these SQL queries are fairly complex, as testified by the generalized
projection operator (see Script 10.22). In addition, some operations require a
sequence of several queries, which does not contribute to the readability of
temporal data processing scripts.

– Due to the declarative nature of SQL, the execution of some queries may prove
rather slow, particularly for large data sets, depending on the optimization strat-
egies applied by the DBMS.13 In some cases, the result of these queries can be
obtained faster by a simple scan of the temporal table.

The SQLfast library LTemp provides a collection of operators the goal of which is to
simplify and optimize the processing of temporal data. This library is a Python
module that works on the currently opened database. Each function requires a single
argument which is a query expressed in a pseudo-SQL language. It returns a
numeric code indicating how the execution was carried out.

The table and column names that appear in the argument of the functions must
obey the following syntactic rules: strict SQL naming conventions, no SQL
reserved words14, no quoted or bracketed names and no name beginning with an
underscore character.

In all the temporal tables referenced in the function argument, the interval
columns (start, followed by end, whatever their real name) must be the last ones of
their schema.

At the present time, this library offers five operators, but more may be developed
in the future.

a) Temporal projection

This operator executes a generalized projection of a source table on selected
columns and stores the result in a target table.

Syntax

LTemp:project {<project-query>};

Argument

<project-query> ::= select <columns>
 from <source>
 [where <condition>]
 into <target>
<source> ::= table name
<columns> ::= column list
<condition> ::= SQL condition

13. For instance, the restricted version of the projection of Script 10.20 (with one level of
subquery) is particularly fast, while the generalized version of Script 10.22 (with two levels of
subquery) is much slower. This observation has been done for SQLite v3.28. The conclusion can
be different for other versions or other DBMS.
14. Except for start and end for interval columns, courtesy of the benevolence of SQLite!

58 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

<target> ::= table name

Semantics

Computes the generalized projection of table (or view) <source> on its columns
<columns> and stores the result in table <target>. If <condition> is specified,
only the rows that satisfy this condition are processed. If table <target> does not
exist it is created.

Constraint

– The database containing table <source> must be opened.

– The columns of <columns> may not specify column aliases.

– The from clause may not specify a table alias.

Return code

0: successful execution
1. no database opened
2: syntax error in <project-query>
3: error in source data extraction
4: error in generating the result data

Example

function status = LTemp:project {select CITY,PROJECT
 from H_EMPLOYEE
 where Salary > 6000
 into H_CITY_PRO};

b) Temporal reduction

This operator implements a simplified version of the projection. It reduces the
consecutive value-equivalent states in the source table itself.

Syntax

LTemp:reduce {<reduce-query>};

Argument

<reduce-query> ::= select <columns>
 from <source>
<source> ::= table name
<columns> ::= column list

Semantics

Reduces the consecutive value-equivalent states in the source table itself. Same
effect as LTemp:project where the target table is the source table.

59

Printed 29/8/19

Constraint

– The database containing table <source> must be opened.

– <source> must be a base table, not a view.

– The columns of <columns> may not specify column aliases.

– The from clause may not specify a table alias.

Return code

0: successful execution

1. no database opened
2: syntax error in <project-query>

3: error in source data extraction
4: error in generating the result data

Example

function status = LTemp:reduce {select CITY,PROJECT from H_CP};

c) Temporal intervals (basic)

This generates the stable intervals of the source table, augmented by additional
column values and stores the result in a target table. This operator prepares data for
computing aggregates on the additional columns.

Syntax

LTemp:valuedInterval {<interval-query>};

Argument

<interval-query> ::= select <columns>
 from <source>
 [where <condition>]
 [group by <groupBy>]
 into <target>
<source> ::= table name
<columns> ::= column list
<condition> ::= SQL condition
<groupBy> ::= column list
<target> ::= table name

Example

function status = LTemp:valuedInterval
 {select PROJECT,CITY,SALARY
 from H_EMPLOYEE
 where SALARY > 6000
 group by PROJECT,CITY

60 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

 into VALUED_STABLE_INTERVAL};

function status = LTemp:valuedInterval
 {select PROJECT,CITY,SALARY
 from H_EMPLOYEE
 into COMMON_VALUED};

Semantics

This operator is used as the first step of temporal aggregate functions. It computes
the largest intervals in source table <source> (among the rows that satisfy
<condition>) in which the values of <groupBy> are constant. Then, it associ-
ates with each of these intervals the values of <columns> that hold in the source
table in this interval. From this result, that has been stored in table <target>,
various temporal aggregate functions can be applied on <columns> for each
<groupBy> group. Table <target> is created if it does not exist.

When <groupBy> is absent, the intervals are computed differently. An interval is
considered stable throughout table <source> if the values of <columns> (not
only of <groupBy> as in the former formula) are constant in this interval.

Constraint

– The database containing table <source> must be opened.

– The columns of <columns> may not specify column aliases.

– The columns of <groupBy> form a subset of those of <columns>.

– The from clause may not specify a table alias.

Return code

0: successful execution

1. no database opened

2: syntax error in <project-query>

3: error in source data extraction

4: error in generating the result data

Example

function status = LTemp:valuedInterval
 {select PROJECT,CITY,SALARY
 from H_EMPLOYEE
 where SALARY > 6000
 group by PROJECT,CITY
 into VALUED_STABLE_INTERVAL};

function status = LTemp:valuedInterval
 {select PROJECT,CITY,SALARY
 from H_EMPLOYEE
 into COMMON_VALUED};

61

Printed 29/8/19

d) Temporal intervals (extended)

Same function as valuedInterval with more flexible select list. An element of the
select list can be a column name but also a constant or a scalar SQL expression.

Syntax

LTemp:valuedIntervalE {<interval-query>};

Argument

<interval-query> ::= select <columns>
 from <source> <alias>
 [where <condition>]
 [group by <groupBy>]
 into <target>
<source> ::= table name
<exp-list> ::= list of SQL scalar expressions
 where column names are prefixed
 with <alias> for <source> columns
 and 'S' for Start and End
 from "_STABLE_INTERVAL"
<condition> ::= SQL condition where column names are prefixed
 with <alias>
<groupBy> ::= column list where column names are prefixed
 with <alias>
<target> ::= table name

Semantics

This operator is used as the first step of temporal aggregate functions. It computes
the largest intervals in source table <source> (among the rows that satisfy
<condition>) in which the values of <groupBy> are constant. Then, it associ-
ates with each of these interval the values of <exp-list> that hold in the source
table in this interval. Elements of the select list can be a column name, a constant
or any expression that evaluates into a single value.

From this result, that has been stored in <target>, various temporal aggregate
functions can be applied on <exp-list> for each <groupBy> group.

When <groupBy> is absent, the intervals are computed differently. An interval is
considered stable throughout table <source> if the values of <exp-list> are
constant in this interval.

Constraint

– The database containing table <source> must be opened.

– The column names that appear in <exp-list> must be prefixed with <alias>
except columns Start and End, defining the interval, that must be prefixed by
alias 'S'.

– The columns of <groupBy> form a subset of those of <columns>.

62 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Return code

0: successful execution
1. no database opened
2: syntax error in <project-query>
3: error in source data extraction
4: error in generating the result data

Example

function status = LTemp:valuedIntervalsE
 {select E.PROJECT,E.CITY,E.SALARY*12/365,
 durationDays(S.Start,S.End) as Dur
 from H_EMPLOYEE E
 where E.SALARY > 6000
 group by E.PROJECT, E.CITY
 into VALUED_STABLE_INTERVAL};

e) Temporal normalization

This operator completes a source table by inserting fictitious states made up of null
values for each missing interval. It is particularly useful to prepare tables for outer
joins.

Syntax

LTemp:normalize {<normalize-query>};

Argument

<normalize-query> ::= update <source>
 [wrt <compare>]
 on <Scolumns> [= <Ccolumns>]
 [into <target>]
<source> ::= table name
<compare> ::= table name
<Scolumns> ::= column list
<Ccolumns> ::= column list
<target> ::= table name

Semantics

If, for each value of <Scolumns>, table <source> is incomplete and includes
gaps, aka missing intervals, this operator replaces them by fictitious states
comprising the value of <Scolumns> + null values. So, the history of each value
of <Scolumns> is now complete. If <target> is specified, the completed data
are stored in table <target>. Otherwise, the new states are inserted in table
<source> itself. It table <target> does not exist, it is created.
If table <compare> is specified, <Ccolumns> must also be specified. When
comparing the history of a value of <Scolumns> in table <source> with the
history of the same value of <Ccolumns> in <compare>, if the latter history

63

Printed 29/8/19

either starts earlier or ends later, then one or two fictitious states are added to the
history of <source> in order to adjust both histories. If this way, the history of
<source> does not start after that of <compare> and does not end before that of
<compare>, and this, for each value of <Scolumns>. This function is mainly
used in the preparation of the arguments of outer joins.

If table <source> is empty, a null state is generated for each value of <Ccol-
umns>. Its interval is the life span of this value in <compare>.

Constraints

– The database containing table <source> must be opened.

– If <target> is specified, <source> can be a view.

– The columns of <columns> may not specify column aliases.

– The from clause may not specify a table alias.

Return code

0: successful execution

1. no database opened

2: syntax error in <project-query>

3: error in source data extraction

4: error in generating the result data

Examples

function status = LTemp:normalize {update H_EMP on Proj;

function status = LTemp:normalize {update H_EMP on Proj
 into NewEMP;

function status = LTemp:normalize {update H_EMP wrt H_PRO
 on Proj = ProID
 into NewEMP;
function status = LTemp:normalize {update H_T2 wrt H_T1
 on A1,A2 = B1,B2
 into NewEMP;

10.13 Temporal data format conversion

The first part of this case study describes some of the most popular models of
temporal data. The first one, entity-based, or more generally tuple-based, have been
our main support to develop the algorithms of this second part. In this model, all the
attributes of an entity are collected to form a single row (or tuple), with which we
associate a time interval that specifies the period during which these values were
valid, either in the real world (valid time) or in the database (transaction time).

64 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

The other formats are briefly described and illustrated in this first part, but we
have not developed algorithms to convert temporal data from one model into
another one. The reasons are twofold: some conversion rules are obvious (hori-
zontal splitting for example) while others require operators that were not yet
introduced at that stage.

In this section, we examine the conversion rules of entity-based temporal data to
attribute-based, event-based and document-oriented models.

10.13.1 Entity-based to attribute-based history conversion

Each attribute table is obtained through a temporal projection. Script 10.69 gener-
ates attribute tables H_SAL, H_CIT and H_PRO from columns SALARY, CITY and
PROJECT of table H_EMPLOYEE. null states can be deleted if needed.

The source table can be recovered through a simple temporal join of the attribute
tables if null states are preserved. Otherwise, H_EMPLOYEE must be rebuilt through
an outer join.

Script 10.69 - Projecting of H_EMPLOYEE on each non-PK column

10.13.2 Entity-based to event-based history conversion

While entity(or tuple)-based history represents the successive states of each entity,
event-based history records the state transitions induced by data modification oper-
ation. Each row comprises a value for each entity attribute plus the nature of the
event and the instant this event occurred. Figure 10.36 reminds us what the transac-
tion time history of projects looks like.

+-----------+----------------------+--------+------+--------+
| TITLE | THEME | BUDGET | Time | Event |
+-----------+----------------------+--------+------+--------+
AGRO-2000	Crop improvement	65000	21	create
AGRO-2000	Crop improvement	75000	36	update
AGRO-2000	Crop improvement	82000	41	update
BIOTECH	Biotechnology	180000	2	create
BIOTECH	Genetic engineering	160000	7	update
BIOTECH	Genetic engineering	120000	9	update
BIOTECH	Genetic engineering	140000	20	update
BIOTECH	Biotechnology	140000	44	update
SURVEYOR	Satellite monitoring	310000	12	create

function LTemp:project
 {select CODE,SALARY from H_EMPLOYEE into H_SAL};

function LTemp:project
 {select CODE,CITY from H_EMPLOYEE into H_CIT};

function LTemp:project
 {select CODE,PROJECT from H_EMPLOYEE into H_PRO};

65

Printed 29/8/19

SURVEYOR	Satellite monitoring	375000	18	update
SURVEYOR	Satellite monitoring	345000	31	update
SURVEYOR	Satellite monitoring	345000	40	delete
+-----------+----------------------+--------+------+--------+

Figure 10.36 - Event-based history of projects

The conversion of entity-based to event-based history relies on the following rules,
stated for a definite project:

• create: this event is identified by the first state of the project. Its Time value is
that of start of the row of this state.

• delete: this event corresponds to the last state of the project, provided the value
of end of this state is not infinite future. Its Time value is that of end of the row
of this state.

• update: this event is defined by a state of the project that is not the first one. Its
Time value is that of start of the row of this state.

We observe that the last state of a deleted entity generates two events: an update or
create event and a delete event.

Script 10.70 translates these rules to create event-based table EH_PROJECT. The
creation of table EH_EMPLOYEE is quite similar.

Script 10.70 - PROJECT: from entity-based to event-based

Let us now examine how each event of EH_PROJECT can be translated into entity-
based state.

create table EH_PROJECT as
 select TITLE,THEME,BUDGET,start as Time,'create' as Event
 from H_PROJECT P
 where not exists(select *
 from H_PROJECT
 where TITLE = P.TITLE and end = P.start)
 union
 select TITLE,THEME,BUDGET,end as Time,'delete' as Event
 from H_PROJECT P
 where not exists(select *
 from H_PROJECT
 where TITLE = P.TITLE and start = P.end)
 and end <> $future$
 union
 select TITLE,THEME,BUDGET,start as Time,'update' as Event
 from H_PROJECT P
 where exists(select *
 from H_PROJECT
 where TITLE = P.TITLE and end = P.start);

66 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

• create: we create a state of the project (the first one) with the values of TITLE,
THEME and BUDGET of the event row. Its start value is that of Time of the row
of this event. If this event is followed by a next event on this project, then the
Time value of the latter is assigned to the end value of the state in construction.
Otherwise, if it is the only event of the project, then the state is current and its
end value is set to infinite future.

• update: we create a state of the project. The values of columns TITLE, THEME,
BUDGET, start and end are assigned with the same rules as those of the create
event.

• delete: this event was just an additional by-product of the analysis of entity
states. Its information has already been taken into account when examining the
other two event rows. We can ignore it.

The algorithm of Script 10.71 generates entity-based view VEH_PROJECT from
table EH_PROJECT. It proceeds in two steps: generation of past states and genera-
tion of current states.

• A past state is generated by two successive events of the project, the first one
being a create or update event. Two events are successive if there is no other
event between them.

• A current state is generated by a create or update event row that is not followed
by another event of the same project.

We observe that delete events rows have not been used in the conversion process.

Script 10.71 - PROJECT: from event-based to entity-based

create view VEH_PROJECT(TITLE,THEME,BUDGET,start,end) as
 -- Generate past states --
 select P1.TITLE,P1.THEME,P1.BUDGET,P1.Time,P2.Time
 from EH_PROJECT P1,EH_PROJECT P2
 where P1.TITLE = P2.TITLE and P1.Time < P2.Time
 and P1.oper in ('create','update')
 and not exists(select * from EH_PROJECT
 where TITLE = P1.TITLE
 and Time > P1.Time and Time < P2.Time)
 union
 -- Generate current states --
 select P.TITLE,P.THEME,P.BUDGET,P.Time,$future$
 from EH_PROJECT P
 where P.oper in ('create','update')
 and not exists(select * from EH_PROJECT
 where TITLE = P.TITLE
 and Time > P.Time);

67

Printed 29/8/19

10.13.3 Entity-based to document-oriented history conversion

We will describe a method that produces data according to a light format using
SQLfast multilist data structures. This format is close to that described in Section
9.9.5 and illustrated by Figure 9.18 but easier to generate and to decode. Deriving
from it the algorithm that generates pure JSON variant is immediate.

The Projects value of employee A237 is as follows (we work on the transaction time
version for simplicity):
AGRO-2000:24-30,33-999999;BIOTECH:30-33

It is structured as a 4-level hierarchy:

level 1: the value of Projects is a list of value-intervals components, (here,
AGRO-2000:24-30,33-999999 and BIOTECH:30-33), separated by symbols
';';

level 2: a value-interval component is a list of two elements, separated by
symbol ':'; the first element is the value of a project title (e.g., AGRO-2000)
and the second one provides the intervals associated with this value;

level 3: the intervals are structured as a list of intervals, separated by symbols
',';

level 4: an interval is a list of two time points, separated by symbol '-'.

We will derive this structure from the attribute-based model generated by projecting
H_EMPLOYEE on each column. Through Script 10.69, we get tables H_SAL, H_CIT
and H_PRO. For simplicity, we ignore constant column NAME.

Then, we compute, for each distinct value of each column for each employee, the
list of its intervals (Script 10.72 and Figure 10.37 for column PROJECT).

Script 10.72 - Grouping intervals for each PROJECT value of each employee entity

+------+-----------+-----------------+
| CODE | PROJECT | Projects |
+------+-----------+-----------------+
A237	AGRO-2000	24-30,33-999999
A237	BIOTECH	30-33
A68	BIOTECH	8-13
A68	SURVEYOR	13-39
C45	AGRO-2000	22-28
C45	BIOTECH	11-22,28-999999
D107	BIOTECH	35-999999
D107	SURVEYOR	15-35
D122	AGRO-2000	37-42
D122	BIOTECH	10-16
D122	SURVEYOR	16-37

create table HH_PRO as
select CODE,PROJECT,group_concat(start||'-'||end,',') as Projects
from H_PRO group by CODE,PROJECT;

68 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

G96	AGRO-2000	23-999999
G96	BIOTECH	3-23
M158	BIOTECH	4-14,34-999999
M158	SURVEYOR	14-34
N240	AGRO-2000	32-43
N240	BIOTECH	19-25
N240	SURVEYOR	25-32
+------+-----------+-----------------+

Figure 10.37 - Project history of each employee entity

Finally, we collect these values together with their associated intervals for each
CODE value (Script 10.73 and Figure 10.38).

Script 10.73 - Associating their value-intervals pairs with each CODE value

+------+--+
| CODE | Projects |
+------+--+
A237	AGRO-2000:24-30,33-999999;BIOTECH:30-33
A68	BIOTECH:8-13;SURVEYOR:13-39]
C45	AGRO-2000:22-28;BIOTECH:11-22,28-999999
D107	BIOTECH:35-999999;SURVEYOR:15-35]
D122	AGRO-2000:37-42;BIOTECH:10-16;SURVEYOR:16-37
G96	AGRO-2000:23-999999;BIOTECH:3-23
M158	BIOTECH:4-14,34-999999;SURVEYOR:14-34
N240	AGRO-2000:32-43;BIOTECH:19-25;SURVEYOR:25-32
+------+--+

Figure 10.38 - Document-oriented presentation of the projects of employee entities

The final document-based table is obtained by joining this table with those built in a
similar way on SALARY and CITY. By integrating these small scripts into a single
SQL query, we get the final algorithm of Script 10.74.

Rebuilding the source data from this presentation is of course quite possible.
However, doing this with SQL queries only would be fairly complex. Considering
the 4-level structure of the data, the most obvious approach would be a procedure
comprising embedded loops, each decoding a level of the data structure. This is what
Script 10.75 implements for column PROJECT.

– The main loop reads each row of DOC_EMPLOYEE, extracting the values of
CODE (in variable cod) and Projects (in variable pro) of one employee.

– The next inner loop extracts successive value-intervals component of Projects
(in variable project).

– The most inner loop extract from this component each individual interval (in
variable interval).

– This interval is finally split into start and end values.

select CODE,group_concat(PROJECT||':'||Projects,';') as Projects
from HH_PRO group by CODE;

69

Printed 29/8/19

Script 10.74 - Converting the contents of H_EMPLOYEE into the document-oriented
model

A simple join (or outer join, depending on whether source columns were nullable or
not) will rebuild the original H_EMPLOYEE table.

Script 10.75 - Rebuilding table H_PRO from document-oriented data

create table DOC_EMPLOYEE(CODE,Salaries,Cities,Projects);
with
 HH_SAL(CODE,SALARY,Salaries)
 as (select CODE,SALARY,group_concat(start||'-'||end,',')
 from H_SAL group by CODE,SALARY),
 HH_CIT(CODE,CITY,Cities)
 as (select CODE,CITY,group_concat(start||'-'||end,',')
 from H_CIT group by CODE,CITY),
 HH_PRO(CODE,PROJECT,Projects)
 as (select CODE,PROJECT,group_concat(start||'-'||end,',')
 from H_PRO group by CODE,PROJECT)
insert into DOC_EMPLOYEE
select sal.CODE,sal.Salaries,cit.Cities,pro.Projects
from (select CODE,group_concat(SALARY || ':'||Salaries,';')
 as Salaries
 from HH_SAL group by CODE) sal,
 (select CODE,group_concat(CITY || ':'||Cities,';')
 as Cities
 from HH_CIT group by CODE) cit,
 (select CODE,group_concat(PROJECT || ':'||Projects,';')
 as Projects
 from HH_PRO group by CODE) pro
where sal.CODE = cit.CODE and sal.CODE = pro.CODE;

create table H_PRO(CODE char(5),PROJECT char(20),
 start integer,end integer);

for cod,pro = [select CODE,Projects from DOC_EMPLOYEE];
 for project = [item(;) pro];
 compute value = item('$project$',1,':');
 compute intervals = item('$project$',2,':');
 for interval = [item(,) $intervals$];
 compute start = item('$interval$',1,'-');
 compute end = item('$interval$',2,'-');
 insert into H_PRO(CODE,PROJECT,start,end)
 values ('cod','$value$',$start$,end);
 endfor;
 endfor;
endfor;

70 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

10.14 Performance analysis and optimization

TDB.db, the database we have used so far, was fine to elaborate temporal data
models and to develop querying and transforming algorithms but it is not at all suit-
able for measuring the performances of these algorithms. To this aim, we will use a
series of experimental temporal databases with increasing size. They all include a
unique table, H_EMPLOYEE, with the same schema as that of TDB.db. They are
named TDB-xxxx.db, where xxxx, ranging from 100 to 200000, is the number of
employees the states of which they contain. They include about 10 states per
employee (as a reminder, database TDB.db describes the 28 states of 8 employees).
These eleven valid time databases can be downloaded from the SQLfast website (in
Section Technical complements).

These databases are derived from the employees.db database available at https://
github.com/siara-cc/employee_db. The latter was itself indirectly translated from an
XML dataset developed by Fusheng Wang and Carlo Zaniolo in 2003. This dataset
is available at http://timecenter.cs.aau.dk/software.htm.

To make the source database comply with our TDB.db database, we have applied
the following transformations:

– The data are integrated into a single table H_EMPLOYEE

– Rows with invalid intervals are deleted

– Employee rows where properties (title, salary, etc.) are missing are deleted

– A one-letter prefix is added to emp_id to produce column CODE

– Columns first_name and last_name columns are merged to form column NAME

– Column title is converted into column PROJECT

– Column department is converted into column CITY

– Yearly salary is converted into monthly SALARY

– SALARY values are rounded to a multiple of 5

– This rounding produces consecutive value-equivalent states; they are reduced

– Symbolic future '9999-01-01' is changed to '9999-12-31'

In the following sections, we measure the execution time of the algorithms that
implement the main temporal operators for each of the experimental databases. We
also show that some of these algorithms can be dramatically improved by carefully
selected indexes while for others, seemingly promissing indexes just slow them
down.

It should not be forgotten that the performance figures depend on the optimiza-
tion strategies of the DBMS. Different conclusions could be drawn with other
DBMS or with variants of the SQL queries developed in this case study.

71

Printed 29/8/19

Scalability of the algorithms

A major concern, when we develop an algorithm, is the way it behaves when it
processes larger data sets. This issue is commonly described by the time complexity
of the algorithm, that is (said very simply), by the shape of the function that relates
the running time against the size of the problem, generally noted N, here the number
of employees.15 If applying an operator on 10,000 employees takes 10 seconds, how
much time will the algorithm require to process 20,000 employees? The best we can
expect (in a reasonable world) is that this time will double to about 20 seconds. If
this proves exact, then our algorithm will be said to have a linear complexity, noted
O(N). If we are unlucky, its complexity could be O(N.logN), or even worse O(N2). We
will pay attention to this aspect in the analysis of the algorithms of the temporal
operators

10.14.1 Temporal projection

We have identified two patterns of SQL temporal projection operators (called pred-
icative techniques), namely entity-based projection (Script 10.20) and generalized
projection (10.22). The first one is devoted to the frequent, but limited case in which
the projection columns include the components of the entity primary key, such as
CODE for H_EMPLOYEE and TITLE for H_PROJECT. The second one does not
impose any constraint on the composition of the projection columns and can be used
to solve any pattern of projection.

Besides the SQL implementation of the projection operator, a procedural algo-
rithm is available through function LTemp:project (Script 10.24).

Of the three algorithms, the generalized predicative technique, despite its
elegance, is quickly disqualified from the other two algorithms: the projection on
CITY,PROJECT of H_EMPLOYEE with 1,000 employees cost 9 seconds, compared
to 16 milliseconds for the procedural technique (more than 560 times slower). This
technique could be used, if desired, for datasets not larger than 200 employees, if a
cost of 2.23 seconds is considered acceptable. So, we discard this technique to
concentrate on entity-based predicative and procedural techniques. The execution
times of these techniques, for experimental databases from 1,000 to 50,000
employees (about 10,000 to 500,000 states) are shown in the table of Figure 10.39
and in the graph of Figure 10.40.

These figures show that,

– both techniques are reasonable fast,

– the procedural technique is 40% faster than the predicative technique,

– the evolution of the execution time against the database size is linear: if we
double the size, we just double the time. This is natural for the procedural algo-
rithm, which merely scans the data, but it means that the SQL optimizer was
able to generate a similar query plan despite the complexity of the SQL query.

15. See https://en.wikipedia.org/wiki/Time_complexity

72 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Figure 10.39 - Computing entity-based projection H_EMPLOYEE[CODE,CITY]

Figure 10.40 - Graphical representation of the execution time of the projection
H_EMPLOYEE[CODE,CITY]

10.14.2 Temporal inner join

Joining tables requires at least two tables (unless one accepts to perform self joins
only!) such as H_EMPLOYEE and H_PROJECT of database TDB.db. To get realistic
performance figures we will prepare two joinable tables, H_EMP1 and H_EMP2, in
databases TDB-100 to TDB-50000. The contents of H_EMP1 is generated by the
projection of H_EMPLOYEE on columns CODE, NAME, CITY while H_EMP2 results
from the projection on CODE, SALARY, PROJECT:

function LTemp:project {select CODE,NAME,CITY
 from H_EMPLOYEE into H_EMP1};

predicative procedural

1K 0.031 0.015

2K 0.062 0.047

5K 0.141 0.093

10K 0.297 0.203

20K 0.594 0.437

50K 1.515 1.078

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0K 10K 20K 30K 40K 50K

procedural

predicative

Nemp

s.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0K 10K 20K 30K 40K 50K

procedural

predicative

Nemp

s.

73

Printed 29/8/19

function LTemp:project {select CODE,SALARY,PROJECT
 from H_EMPLOYEE into H_EMP2};

CODE is the primary key (and therefore a unique index) in both tables. On each
experimental database, table H_EMP1 contains about 1.1 state per employee (proper-
ties name and city are fairly stable) and H_EMP2 contains about 10 states per
employee. Joining these tables on entity primary key CODE provides the time scores
of Figure 10.41.

Figure 10.41 - Joining tables H_EMP1 and EMP2

These results show that the execution times follow a linear rule fairly similar to that
of procedural projection (Figure 10.40).

10.14.3 Temporal outer join

For this experiment, we will use tables H_EMP1 and H_EMP2 built to study inner
join. In the largest, H_EMP2, we delete about 10% of the states, randomly selected,
with the following query:

set step = 19;
with OID(oid) as
 (select random_i(0,$step$)
 union all
 select oid + random_i(1,$step$)
 from OID where oid < max)
delete from H_EMP2 where rowid in (select oid from OID)

The left outer join of H_EMP1 with H_EMP2 proceeds in two steps: replacing the
missing states in H_EMP2 with null states (the normalization step) then applying an
inner join between H_EMP1 and H_EMP2 so completed. We have proposed two
normalization techniques, namely predicative (Script 10.31) and procedural (Script
10.35).

The table of Figure 10.42 and the graph of Figure 10.43 show the execution times
of the normalization step of H_EMP2 wrt H_EMP1 for databases TDB-1000 to TDB-
50000.

H_TEMP1 * H_EMP2

1K 0.094

2K 0.109

5K 0.172

10K 0.266

20K 0.485

50K 0.969

74 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Figure 10.42 - Outer join preparation: normalizing incomplete table H_TEMP2

Figure 10.43 - Graphical representation of the execution time of the normalization of
H_EMP2

Once again, the normalization time follows a linear rule for both techniques. The
execution time of the whole outer join process is therefore also linear. Both tech-
niques provide reasonable times for small to medium dataset sizes. For large
datasets, the procedural technique clearly is recommended.

10.14.4 Aggregation

Temporal aggregation consists in applying standard group by queries on a special
table, VALUED_STABLE_INTERVAL (STABLE_EMPLOYEE is just a variant of it),
derived from the source table. Due to their different nature, we consider these two
steps separately.

Predicative Procedural

1K 0.219 0.047

2K 0.297 0.078

5K 0.657 0.141

10K 1.125 0.266

20K 2.141 0.547

50K 5.047 1.375

0

1

2

3

4

5

6

procedural

predicative

s.

0K 10K 20K 30K 40K 50K Nemp

0

1

2

3

4

5

6

procedural

predicative

s.

0K 10K 20K 30K 40K 50K Nemp

75

Printed 29/8/19

Step 1: computing VALUED_STABLE_INTERVAL

This operator comprises three main operations. We will examine each of them to
analyze its behavior and to check if, and how, they can be improved.

Computing the events of each project (table EVENT)

The algorithm we propose computes the events as the union of the sets of start and
end values of H_EMPLOYEE:

select PROJECT,start as Instant from H_EMPLOYEE
 union
select PROJECT,end as Instant from H_EMPLOYEE;

Its cost accounts for 15% of the lowest total computing time. We observe that this
algorithms (probably) will scan table H_EMPLOYEE twice and that duplicate elimi-
nation requires a preliminary sorting of the dates. To avoid these operations, we
could propose the following version:

select PROJECT,start as Instant from H_EMPLOYEE
 union all
select PROJECT,max(End) as Instant from H_EMPLOYEE;

It is based on the fact that the sets of values of start and end are the same, except for
the lowest within the set of start values and the highest within the set of end values.
The gain is quite interesting: 0.7 s. against 3.2 s. for the initial version, these values
being observed on the largest database (Nemp = 200,000). Unfortunately, these algo-
rithms are not equivalent. The former is valid even if the history includes gaps, while
the latter requires that the history be complete.

Therefore, we keep the initial version of the algorithm, which is more general.

Computing the stable intervals of each project (table STABLE_INTER
VAL)

The stable intervals are computed through a self-join of table EVENT, which asso-
ciate with each Instant value the next value in EVENT, except for the last one:

select PROJECT,
 Instant as Start,
 (select min(Instant) from EVENT
 where PROJECT= E.PROJECT
 and Instant > E.Instant) as End
from EVENT E where End is not null;

So far, we have defined no index on EVENT. Let us create one on (PROJECT,
Instant), that should speed up the join operation:

create index XEVENT on EVENT(PROJECT,Instant);

76 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

The effect of this index is particularly dramatic: while table STABLE_INTERVAL is
created in 98 s. without index, the latter performs this creation in no more than 0.078
s. (index creation included), that is 0.08% of the initial cost (observed for Nemp =
10,000)!

We naturally add this index.

Computing the valued stable intervals (table VALUED_STABLE_INTER
VAL)

This operation consists in adding to each stable interval a set of values extracted
from H_EMPLOYEE. This is done through a simple inner join:

select S.PROJECT,E.SALARY,S.start,S.end
from STABLE_INTERVAL S, H_EMPLOYEE E
where E.PROJECT = S.PROJECT
and E.start <= S.start and S.start < E.end;

H_EMPLOYEE has a primary key made up of columns CODE and start, which means
that a unique index has been created on these columns. As to STABLE_NTERVAL it
has so far been given no index. Let create this one, which, hopefully, may support
the join operator:

create index XSI on STABLE_INTERVAL(PROJECT,Start);

Once again this index has a decisive effect: table VALUED_STABLE_INTERVAL is
created in 93.7 s. without index and in 12.7 s. with this index (index creation
included), that is 13.6% of the initial cost (also observed for Nemp = 10,000).

We suggest to keep this index.

The global process

Now, let us consider the cost of the whole operation. The table of Figure 10.44
shows the contribution of each subprocess for different configurations of the
indexes. Label pred (a+b) indicates that index EVENT(PROJECT,Instant) is
created (a=1) or not (a=0) and that index STABLE_INTERVAL(PROJECT,Start) is
created (b=1) or not. The last row gives the execution time of the procedural algo-
rithm as provided by function LTemp:valuedInterval. These times have been collected
for the TDB-10000 database (10,000 employes).

Two important observations:

1. The gain provided by the indexes is very important, the execution time falling
from 191.9 s. to 13 s., that is, 6.8% of the initial time, or, more impressive, an
improvement of 93.2%.

2. The optimized predicative and procedural algorithms have the same cost, with
a slight advantage for the predicative algorithm. This shows that native SQL
queries may prove as efficient (and often more efficient) than procedural tech-
niques.16

77

Printed 29/8/19

Figure 10.44 - Detailed cost for Nemp = 10,000 employees (100,755 states)

3. The optimized predicative algorithm generates the valued stable intervals at an
impressive rate of 2.36 million states per second.

The five predicative and procedural algorithmic variants described above provide
the results shown in the table of Figure 10.45.

Figure 10.45 - Execution time (in seconds) of the main variants of algorithms for
increasing values of Nemp

The figures are reported in the graph of Figure 10.46, which shows the trend of the
running time of the algorithms against the increasing values of Ntemp. This trend
suggests that the fastest implementations of the operator run in quasi-linear time,
which is very good news.17

The choice between (optimized) predicative and procedural techniques is a
matter of taste since their performances are fairly equivalent.

16. Such an observation has also been made for case study Conway’s Game of Life, where careful
SQL query tuning allowed the computing time to drop from 838 s. to just 0.6 s.

EVENT STABLE_INTERVAL
VALUED_

STABLE_INTERVAL
Total

size 28,017 28,011 30,677,511

pred (0+0) 0.19 98.00 93.70 191.9

pred (0+1) 0.19 98.00 12.70 110.9

pred (1+0) 0.19 0.078 93.70 93.9

pred (1+1) 0.19 0.078 12.70 13.0

procedural 13.4

predicative
procedural

0+0 0+1 1+0 1+1

1K 12.3 9.9 3.0 0.6 0.6

2K 35.9 27.5 9.5 1.6 1.7

5K 102.8 71.1 35,4 5.9 6.1

10K 191.9 110.9 93.9 13.0 13.4

20K 350.9 160.3 218.7 28.4 28.6

50K 765.9 242.1 601.7 69.9 72.8

17. For TDB-200000: 300 s. for 656 million valued intervals (predicative 1+1 technique).

78 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Figure 10.46 - Computing the valued stable intervals: evolution of the running time

Step 2: data aggregation

Now, let us examine the last part of temporal aggregate queries. Once the valued
stable states have been extracted, computing the statistics is expressed through
simple and straightforward group-by SQL queries that seem to leave little room for
improvement.

A popular thumb rule states that an index on the group-by criterion of frequent
aggregate queries is likely to speed up their execution. So, let us create an index on
STABLE_EMPLOYEE(PROJECT,Start) to count employees per project or VALUED
_STABLE_INTERVAL(PROJECT,Start) for the other statistics. It should make the
computing of statistics faster since it is built on the aggregation criterion.

Actually, it does not, as Figure 10.47, that reports on the times of the count func-
tion, makes it clear. Column count gives the execution times when no index has
been created on STABLE_EMPLOYEE. Column (index)+count gives the times for
the same function when an index has been created (index creation time not
included). Column index provides the index creation times. Even if we ignore the
latter time, computing the count statistics in a table devoid from index is far faster
than computing in an indexed table.

The trend is similar for the other statistics. So, we abandon the idea.

We might be surprised by the length of these processes. We must consider that they
are carried out on very large tables. Table STABLE_EMPLOYEE of TDB-10000.db
database comprises about 31 million rows while TDB-50000.db generates 163 million
of them.

0

100

200

300

400

500

600

700

800

s.

0 10K 20K 30K 40K 50K

pred (0 + 0)

pred (0 + 1)

pred (1 + 0)

pred (1 + 1)
proc

Nemp

0

100

200

300

400

500

600

700

800

s.

0 10K 20K 30K 40K 50K

pred (0 + 0)

pred (0 + 1)

pred (1 + 0)

pred (1 + 1)
proc

Nemp

79

Printed 29/8/19

Figure 10.47 - Can an index on STABLE_EMPLOYEE help when counting
employees?

10.15 Temporal data management in current DBMS

Introducing temporal features in SQL standard took quite a long time, nearly three
decades. Since the first scientific publications in the eighties (Allen’s relations were
published in 1983), hundreds of proposals have been published. They were devoted
to the semantics of time (what does such terms as interval, time point, now, past and
future mean; temporal calculus and algebra), to its historical, geographic and
cultural aspects, to temporal languages for time-dependent data and to efficient
implementation of temporal operators in DBMS. SQL:2011 was the first standard to
introduce SQL extensions to represent and manipulate temporal data. Though these
extensions are incomplete, they make modeling and manipulation of temporal data
easier and more reliable. Perhaps as important, they also pave the way to a better
understanding of the temporal data paradigm by practitionners. From these
proposals, most major DBMS have introduced all or a part of the temporal concepts
of SQL:2011. In the rest of this section, we describe these concepts and compare
them to the material presented of this case study.

SQL:2011 introduce the core concept of period. Period is not a data type but a
new schema object defined in the table declaration. It is built from two time values
(dates or timestamps) and is given a user name. In a valid time table, these time
values are controlled by the applications and form an application-time period.

In a transaction time table (called system-versioned table) the period is a system-
time period with standard name SYSTEM_TIME. Its components are time-valued
columns that are managed by the system.

An SQL:2011 table can be bitemporal, that is, with both valid time and transac-
tion time dimensions.

count (index)+count index

1K 1.09 1.41 1.27

2K 3.74 4.67 4.24

5K 15.10 17.63 16.14

10K 34.60 40.61 37.32

20K 75.65 89.93 83.07

50K 204.44 305.80 288.25

80 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

10.15.1 Application-time temporal table

In this case study, both valid time and transaction time data describe the evolution of
a collection of entities and of their associations. Evolution events always apply on
their current states. There is no future state and past states cannot be updated.

The valid time data model of SQL:2011 is more general in that the values of both
start and end temporal columns are under the responsibility of the application. This
means, in particular, that

– the application is free to set both start and end times of a state,

– future events can be coped with, therefore generating future states,

– missing intervals (gaps) are allowed

– value-equivalent intervals may overlap,

– in some cases, even non value-equivalent intervals may overlap, thus speci-
fying that an entity is in more than one state; however, the standard seems to
consider this pattern as not recommended and provides for a way to reject it,

– (whole or part of) states can be modified and deleted.

The temporal dimension of a valid time table is specified by an application-
controlled period, here below named Vperiod:

create table H_EMPLOYEE(
 CODE char(5) not null,
 NAME char(10) not null,
 SALARY integer not null,
 CITY char(10) not null,
 PROJECT char(20) not null,
 Vstart date not null,
 Vend date not null,
 period for Vperiod (Vstart,Vend));

If a primary key is to be specified, it comprises some non temporal columns (here
CODE) + the valid time period:

 primary key (CODE,Vperiod)

To avoid problematic data patterns, we add a constraint enforcing the uniqueness of
rows on CODE values at every time point, that is, in every snapshot of the table

 primary key (CODE,Vperiod without overlaps)

Referential integrity is expressed through a foreign key comprising some non
temporal columns (here PROJECT) + the valid time period.

 foreign key (PROJECT,period Vperiod)
 references H_PROJECT (TITLE,period Vperiod)

81

Printed 29/8/19

Any state of temporal data can be modified, be it current, past or future. We consider
this state of project BIOTECH:

+---------+----------------+--------+------------+------------+
| TITLE | THEME | BUDGET | start | end |
+---------+----------------+--------+------------+------------+
...
BIOTECH	Biotechnology	180000	2014-11-18	2015-02-27
...
+---------+----------------+--------+------------+------------+

It tells that, from 2014-11-18 to 2015-02-27, the budget of this project was 180,000.
Now, we are told that during January of 2015, this budget actually was 150,000. So,
we translate this information as follows:

 update H_PROJECT
 for portion of Vperiod from '2015-01-01' to '2015-01-31'
 set BUDGET = 150000
 where TITLE = 'BIOTECH';

The former state is replaced by these new three states:

+---------+----------------+--------+------------+------------+
| TITLE | THEME | BUDGET | start | end |
+---------+----------------+--------+------------+------------+
...
BIOTECH	Biotechnology	180000	2014-11-18	2015-01-01
BIOTECH	Biotechnology	150000	2015-01-01	2015-01-31
BIOTECH	Biotechnology	180000	2015-01-31	2015-02-27
...
+---------+----------------+--------+------------+------------+

Similarly, we can delete a state or a portion of a state:

 delete H_PROJECT
 for portion of Vperiod from '2015-01-01' to '2015-01-31'
 where TITLE = 'BIOTECH';

A valid time table can be queried as a standard table, with conditions on any
columns, including the temporal columns. Extracting the current state of all the
employees is straightforward:

 select CODE,NAME,Vstart
 from H_EMPLOYEE
 where Vend = '9999-12-31';

It can also be queried through temporal predicates based on the period of the table
(they are derived from, but not identical to, Allen’s relations). This query extract a
snapshot of all the employees at a definite date:

82 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

 select CODE,NAME,Vstart
 from H_EMPLOYEE
 where Vperiod contains '2016-12-31'

This one extract the states falling in a time slice (year 2016):

 select CODE,NAME,Vstart
 from H_EMPLOYEE
 where Vperiod overlaps period ('2016-01-01','2016-12-31');

10.15.2 System-versioned temporal table

The transaction time data model of SQL:2011 is very close to that developed in this
case study18. A system-versioned table (transaction time table) comprises two
timestamp columns that are set and modified by the DBMS alone. They are used to
define system period SYSTEM_TIME. Primary and foreign keys are defined on the
current state without reference to the temporal components of the table:

create table H_EMPLOYEE(
 CODE char(5) not null,
 ...,
 PROJECT char(20) not null,
 Sstart timestamp not null generated always at row start,
 Send timestamp not null generated always at row end,
 period for SYSTEM_TIME (Sstart,Send),
 primary key (CODE),
 foreign key (PROJECT) references H_PROJECT(TITLE))
 with system versioning;

Update and delete queries are those of non temporal tables:

 update H_EMPLOYEE
 set PROJECT = 'BIOTECH'
 where CODE = 'A237';

 delete H_EMPLOYEE
 where CODE = 'A237';

Querying a system-versioned table follows a specific syntax that is different from
that of application-time tables. The current states is extracted as follows:

select CODE,NAME,Sstart,Send
from H_EMPLOYEE
where ...

18. The main difference is that the system clock must provide sufficient precision to prevent two
independent transactions to get the same timestamp. A precision of a millisecond was not consid-
ered sufficient to enforce this property, hence the need of the CLOCK table.

83

Printed 29/8/19

And this is how we extract a snapshot:

select CODE,NAME
from H_EMPLOYEE
for SYSTEM_TIME as of '2016-12-31'
where PROJECT = 'BIOTECH';

A time slice can be specified by a closed-open interval:

select CODE,NAME,Sstart,Send
from H_EMPLOYEE
for SYSTEM_TIME from '2016-01-01' to '2017-01-01'
where ...

... or by a closed-closed interval:

select CODE,NAME,Sstart
from H_EMPLOYEE
for SYSTEM_TIME between '2016-01-01' and '2016-12-31'
where ...

10.15.3 Future directions19

The SQL:2011 standard specifies the temporal data model and language extensions
to formulate elementary queries. However it does not address more complex queries
such as inner and outer joins, projection (and its coalescing derivative),and aggre-
gate functions. Their expression is the responsibility of application programmers.
While the translation of an inner join is quite straightforward, thanks to function
overlaps, the other complex queries require much effort that prevents programmers
from implementing them, as shown in this case study.

10.16 The scripts

The algorithms and programs developed in this study are available as SQLfast
scripts in directory SQLfast/Scripts/Case-Studies/Case_Temporal_DB. Actually, they
can be run from main script TDB-MAIN.sql, that displays the selection box of Figure
10.48.

These scripts are provided without warranty of any kind. Their sole objectives are
to concretely illustrate the concepts of the case study and to help the readers master
these concepts, notably in order to let them develop their own applications.

19. This section relies on the eponym section of reference [Kulkarni, 2012].

84 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

Figure 10.48 - The scripts of Part 1 and Part 2 can be run from this main panel

10.17 References

Among the many hundreds of references on temporal data management, we have
chosen three of the most practical ones. They all are available on the web as free pdf
documents.

Snodgrass, R., T., Developing Time-Oriented Database Applications in SQL,
Morgan Kaufmann, 2000.

This large book (528 pages) explores in much detail the concept of time and its
multiple aspects. It describes various ways to model temporal data and develops
SQL queries and triggers implementing temporal data management primitives
(applied to base tables, not to views). Then, it analyzes and translates in
SQL:1999 the main queries as well as temporal projection and joins. Finally, it
describes an incremental method to build temporal databases. This text may be
difficult to read and to apply practically since all the developments are based on
an unnormalized temporal model, where an entity history may include gaps,
overlapping states and successive value-equivalent states. This model is a gener-
alization of the entity-based model described in this study but it makes the
definition of such basic concepts as primary and foreign keys, as well as the
fundamental algorithms fairly complex. This book does not address aggregation
functions nor performance issues. A good reading to consolidate and extend the
knowledge acquired in this case study. Also shows what lies under the hood of
modern SQL:2011 DBMS.

85

Printed 29/8/19

Jensen, C., J., and Snodgrass, R., T. (Ed.), Temporal Database Entries for the
Springer Encyclopedia of Database Systems, Springer, 2008.

A collection of 81 entries describing most of the standard and advanced concepts
in temporal data management published in Springer Encyclopedia of Database
Systems. Most of these entries have been been retained in the 2018 edition of this
encyclopedia.
http://www.cs.arizona.edu/people/rts/sql3.html

Kulkarni, K., Michels, J., E., Temporal features in SQL:2011, SIGMOD Record,
September 2012 (Vol. 41, No. 3)

This article describes some of the concepts of temporal databases that have been
introduced in standard SQL:2011.

Finally, the reader can find in these slideshows (November 2015) an alternative view
of temporal databases:

https://www.slideshare.net/torp42/temporal-databases-data-models
https://www.slideshare.net/torp42/temporal-databases-queries

86 Case study 10 • Temporal databases - Part 2

Printed 29/8/19

