
Case study 9 9

Temporal databases - Part 1

Objective. In this study we examine various ways to organize the data
describing the evolution of a population of entities. The basic model
consists in storing the successive states of each entity, completed by the
time period during which the state was observable. We distinguish
between the transaction time, that refers to the data modification time
in the database and the valid time, referring to modification events of
entities in the real world. This study particularly develops entity-based,
attribute-based, event-based and document-oriented temporal database
models. In these models, data management is ensured by triggers that
automate as far as possible entity creation, modification and deletion
operations.
The next study will be devoted to temporal database querying and
transformation.
Keywords. temporal data type, temporal database, history, entity type,
time point, time period, time interval, evolution, event, state, transac-
tion time, valid time, bitemporal data, julian day, document-oriented
model, JSON, trigger

2 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

9.1 Introduction

A database, as it generally is considered in text books and lectures, informs on the
current state of the application domain, that is, that part of the real world it is
intended to describe. This is the case of the ORDERS.db database we have used as
the support of most chapters of the SQLfast tutorial and of some case studies.

It turns out that things change, sometimes at a fast pace. For instance, new
customers are registered, new products are offered, orders are placed, prices are
modified, customers move to other cities, orders are cancelled and obsolete products
are withdrawn.

These changes are propagated to the database, as soon as possible, in such a way
that the data always reflect the current state of the application domain. To know the
price of a product, we just consult the database.

The problem with this way of managing data is that we lose the trace of past
facts. To compute the total amount of an order we need to know the price of prod-
ucts at the time the order was placed, not their current price, which may be higher.
We may also need to know the previous address(es) of customers, when they have
been registered (and what was their first order), which of them have been removed
from our customer base, and when. In others words, we would like to know, not
only the current state of the application domain, but also its past states, that is, its
history.1

 Keeping the trace of past states is not as obvious as we could think, particularly
if we intend to reason on these states. Taking a save copy of the database at regular
time point as we do for a simple document is not an option. Just adding a date
column (e.g., createdOn, lastUpdatedOn) does not work either. To cope with these
new problems in a clean and coherent way, we must add to databases a new dimen-
sion: time. This is what we call a temporal database.

This is the goal of this series of studies to develop some of the most appropriate
techniques to represent historical data, to manage them and to exploit them. The
domain of temporal data (of which historical data are a large subset) is particularly
rich and would deserve hundreds of pages to describe and develop most of its
aspects. Considering the modest objectives of these case studies, we will content
ourselves with developing in a very practical way some of these aspects.

Just to give readers the taste of them and the desire to know more!

9.2 Representation of time

Let us first address the way time will be represented in our case studies. Time repre-
sentation systems appear to be particularly complex when we consider all their
physical, geographical, cultural and historical idiosyncrasies. To keep things simple,

1. We will consider past and current states, but not future states, that may pose specific problems.

3

Printed 28/11/20

and considering the kind of application domains we intend to address, we will adopt
this subset of the ISO 8601 standard:2

1. dates: format YYYY-MM-DD.
Example: 2019-07-24

2. time in day: format HH:MM:SS or HH:MM:SS.mmm, where mmm represents
milliseconds3.
Examples: 16:32:09 or 16:32:09.085

3. datetime: date + time separated by one space or by letter T. Also often named
timestamp.
Example: 2019-07-24 16:32:09.085 or 2019-07-24T16:32:09.085

In these formats, we ignore time zones as well as the numerous variations and short-
hands allowed by the standard.

A key concept of our model is the granularity (or precision) of the temporal
dimension. It is defined by the smallest unit of time we can use to specify an instant.
In the examples illustrating the time format here above, the granularities are respec-
tively the day, the second and the millisecond. The appropriate granularity depends
on the kind of phenomenon we intend to describe. In business processes, such as
those concerned by database ORDERS.db, the day, or, at best, the hour, should be
sufficient. We can imagine that anthropology, astronomy or subatomic physics
would require quite different granularities. A time point is any instant to which a
value (a timestamp4) is assigned in the current granularity. To simplify the develop-
ment of temporal databases, we will associate with our application domain a unique
granularity.

In some applications, instead of the real time values, we will use an abstract
time representation through positive integers: 2, 7, 20, 40, etc., as shown in Figure
9.3. This will be useful either to simplify some demonstration (real values as 2017-
07-24 16:32:09.085 are quite cumbersome!) or to resolve granularity conflicts, for
instance to distinguish and order two events that occur at the same time point.

An event is a perceived change that occurs in the application domain or in the
database and that is considered worth being documented. The main characteristic of
an event, besides the nature of the change, is the time at which it occurred. Later, we
will use the term valid time when the change occurs in the application domain and
transaction time when the change applies to the contents of the database. When a
change in the application domain is recorded in the database, we could want to
include in this recording both the valid and transaction times to the change. The
database then comprises bitemporal data.

2. See notably https://en.wikipedia.org/wiki/ISO_8601 and https://www.iso.org/iso-8601-date-
and-time-format.html
3. Actually, according to the standard, the fractional part can be specified up to seven decimals.
However, many DBMS impose a limit of three decimals.
4. This term may raise ambiguity. In the SQL language, timestamp is a temporal data type. Here,
it is a value created to identify an instant in a timeline, according to the chosen granularity.

4 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

We must also mention the concept of timeline, which is the ordered set of all the
time points that can be associated to events. In the kind of application domains we
will cope with, it is common:

1. to identify the starting point of the timeline with a definite time, the events that
occurred before this point being ignored,

2. to leave the ending point undefined, that is, set to infinite future. Since it is not
easy to represent infinite in a computer, we will associate with the ending point
a definite time, but very far in the future.5

In the basic case we will study (database TDB.db), we will choose date 2014-11-18 as
the starting point and 9999-12-31 as the ending point.

Finally, three terms that must be (re)defined before starting:

• period: a portion of a timeline comprised between two time points. A period is
defined by these time points. Can be closed (includes its starting and ending
points), open (excludes its starting and ending points) or half-open (one of its
extreme points is excluded).

• interval: a pair of time points delimiting a series of consecutive time points. An
interval + a time point setting its starting point define a period. In other words,
a period is an anchored interval. SQL:1999 defines an interval as a directed
duration expressed either in years + months or in days + time.

• duration: exact measure of the length of a period. Expressed in non-ambiguous
units such as days or smaller. Also called time distance or span. Example:
41,567.146 seconds

In practice, this vocabulary is used in a quite ambiguous and confusing way. Among
the authors in the database domain, interval and period are often used interchange-
ably, sometimes in the same document. In both parts of this case study, we will use,
whenever no ambiguity may arise, the terms period and interval to denote any
portion of a timeline. When an interval is associated to a state, we will sometimes
allow ourself to identify this state to its interval: for instance, both states overlap is a
shorthand for the intervals of these states overlap.

9.3 The concept of current state

The project we will develop concerns a collection of entities that we intend to
observe and describe during a definite time period. Entities appear, evolve then
disappear. We will illustrate the study by a small application domain made up of two
sorts of entities, namely projects and employees:

5. Some authors suggest to represent the ending point by a null value. This is consistent but this
will make many queries more complex.

5

Printed 28/11/20

1. projects have three attributes: their title, their theme and their budget; their title
is unique

2. employees have five attributes: their code (which is unique), their name, their
salary, the city they live in and the project they work on.

Currently (we mean now), our project comprises two projects and five employees.
They can be described by rows in relational tables PROJECT and EMPLOYEE of
database TDB.db 6 (Figures 9.1 and 9.2). Each entity type is represented by a table.7
In a table, each row describes one entity and each entity is described by one row.
Only active entities are documented. If an entity does not exist (yet), it has no
descriptive row in the table. Similarly, when an entity disappears, there is no row
any more to tell that it has, one day, existed. These tables describe the current state
of the application domain. The rows of these tables are denotations of existing enti-
ties and their current attributes.

+-----------+------------------+--------+
| TITLE | THEME | BUDGET |
+-----------+------------------+--------+
| AGRO-2000 | Crop improvement | 82000 |
| BIOTECH | Biotechnology | 140000 |
+-----------+------------------+--------+

Figure 9.1 - The current state of project entities

+------+-----------+--------+----------+-----------+
| CODE | NAME | SALARY | CITY | PROJECT |
+------+-----------+--------+----------+-----------+
A237	Antoine	3800	Grenoble	AGRO-2000
C45	Carlier	3100	Lille	BIOTECH
D107	Delecourt	3300	Grenoble	BIOTECH
G96	Godin	3900	Genève	AGRO-2000
M158	Mercier	3000	Paris	BIOTECH
+------+-----------+--------+----------+-----------+

Figure 9.2 - The current state of employee entities

9.4 History of an entity

An entity has a life, which is the time period during which it is active (i.e., it is
living). It starts with its birth time and ends with its death time or the current time if
it still lives. Before its life, the entity does not exist, and after its life, it does not exist

6. This database is available in directory databases of the SQLfast distribution. Actually,
EMPLOYEE and PROJECT are not base tables but views on the historical data.
7. This does not preclude situations in which entities can be composed of several sub-entities.
This is the case of database ORDERS.db, in which an order comprises a header and one or
several details. Headers are described in table CUSTORDER and details in table DETAIL.
Distributing the data of complex entities among several tables is typical of normalized relational
databases, in which redundancies are, as far as possible, eliminated.

6 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

any more, though its memory can be maintained. The attributes of an entity are
assigned specific values at birth time and will generally change their values over
time.

If we intend to document the life of these entities, we will have to record all the
events that affect their existence: birth, modification of their attributes and death.
These events form the history of the entity. Figure 9.3 depicts the history of project
BIOTECH. The event times are real dates, but they are denoted by abstract number
for reasons that will be discussed later.

We observe that the project started at time 2, then, at time 7, got a new theme and
a lower budget, at time 9, still a lower budget, and so on until now, at which point
the project still is active.

Figure 9.3 - History of project BIOTECH

now is a time point a bit special: it is constantly moving rightward! It is therefore
difficult to assign it an actual temporal value. There are several ways to denote it.
For instance through a special symbol such as an empty string or null (the SQL
marker), or 'until changed' or 'infinite future' or ∞.

For convenience reason that will appear later, we will choose a time point very
far in the future, so far that it will never be confused with an actual time point of the
application domain.

Times 9999-12-31 or 9999-12-31 23:59:59 or 9999-12-31 23:59:59.999 (in ISO
format) depending on the chosen granularity, could be fair choices, at least to model
human activities. Abstract time point 999999 could be less far (less than one million
events) but still appropriate, at least in our sample database.

Note. The abstract time points must be interpreted with some caution. For example,
considering that the time is measured in days, time point 7 does not neces-
sarily denote the date of time point 2 plus 5 days. It just denotes an
outstanding date later than the date of time point 2, and that there may be four
other outstanding date between them, denoted 3, 4, 5 and 6, be they used or

T
 2 7 9 20 44 now

project BIOTECH starts <theme=’Biotechnology, budget=180.000>
change theme (Genetic engineering) and budget (160.000)

change budget (120.000)
change budget (140.000)

change again theme (Biotechnology)

present time

7

Printed 28/11/20

not in building the history of other entities. This will become clear with the
concept of table CLOCK.

From events to states

Instead of recording these events, we can record the sequence of states which each
entity goes through. A state is defined by the time period during which the values of
its properties remain unchanged. When the value of an attribute changes, the current
state ends (and from then belongs to the past of the entity) and a new current state
starts.

Converted into states, the history of project entities is stored in history table
H_PROJECT of database TDB.db. A part of it, shown in Figure 9.4, provides the
complete history of project BIOTECH. We have represented each state by a row, in
which we show the values of the attributes of the project during this state. The state
itself is specified by the starting point (column start) and the ending point (column
end) of its time period.8 Similarly, the history of employee entities will be stored in
history table H_EMPLOYEE.

We observe that the last time point of a period (end) is also the first point of the
next period. This does not mean that this time point is common to both states.
Instead, the end point of a state is excluded, so that the time period of a state is a
semi-open period, noted [start,end). As we will see later, this convention will
simplify many algorithms. Moreover, it remains valid, whatever the granularity of
the time measure.

+-----------+----------------------+--------+-------+--------+
| TITLE | THEME | BUDGET | start | end |
+-----------+----------------------+--------+-------+--------+
...
BIOTECH	Biotechnology	180000	2	7
BIOTECH	Genetic engineering	160000	7	9
BIOTECH	Genetic engineering	120000	9	20
BIOTECH	Genetic engineering	140000	20	44
BIOTECH	Biotechnology	140000	44	999999
...
+-----------+----------------------+--------+-------+--------+

Figure 9.4 - Excerpt of table H_PROJECT showing the history of project BIOTECH

For instance, if point 7 denotes date 2016-02-17 and point 9, date 2016-07-24, then
the second state of Figure 9.4 is covered by period [2016-02-17,2016-07-24), or, if
the time granularity is one day, by [2016-02-17,2016-07-23].

8. Names start and end are reserved words in the SQL standard and in some DBMS. If needed,
they will be renamed as, for example, Start_time and End_time, or, shorter, Stime and Etime.
SQLite is fairly tolerant on this point!

8 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

9.4.1 Temporal primary, unique and foreign keys
Keys are standard features of relational databases. Primary and unique keys support
uniqueness constraints while foreign keys ensure referential constraints. The
primary key of a table is a unique key that has been given a special status. In partic-
ular, all its components must be declared not null. In the mind of the designer, it
represents the essence of entities9.

What do they become when we add a temporal dimension to data?
Let us start with the non temporal tables of Figures 9.1 and 9.2, that describe the
current states of entities. Let us call them entity tables PROJECT and EMPLOYEE.
The primary key of PROJECT is column TITLE (that translates project id’s) while
that of EMPLOYEE is column CODE. Column PROJECT in EMPLOYEE is a foreign
key referencing table PROJECT. Its target is the primary key of PROJECT.

Temporal primary keys
Considering that a state is at least one time unit long, the values of start of two
successive states of an entity are distinct. This suggests that,

• the temporal primary key of H_PROJECT is (TITLE,start)

• the temporal primary key of H_EMPLOYEE is (CODE,start).

Temporal unique keys
Similarly, each unique key UK in entity table T gives temporal unique key (UK,start)
in historical table H_T.

We could also declare (TITLE,end) and (CODE,end) unique keys, but the way
historical data will be managed will automatically ensure their uniqueness.

Temporal foreign keys
There is no big risk in declaring (PROJECT,start) a temporal foreign key of
H_EMPLOYEE referencing H_PROJECT. However, the concept of referential integ-
rity is less straightforward than in non temporal tables.
In non temporal database, we must check that:

for each row e in EMPLOYEE, there exists a row p in PROJECT such that:
• p.TITLE = e.PROJET

Translated for a temporal database, this property becomes:
for reach row he in H_EMPLOYEE, for each time point t of he, there exists a
row hp in H_PROJECT such that hp.TITLE = he.PROJECT and hp.start ≤ t
< hp.end

9. The non-nullability of primary keys is often expressed as entity integrity.

9

Printed 28/11/20

More practically,
for each row he in H_EMPLOYEE, there exists two rows hp1, hp2 (not
necessarily distinct) in H_PROJECT such that (see Figure 9.5):
• hp1.TITLE = hp2.TITLE = he.PROJET

• hp1.start ≤ he.start et he.end ≤ hp2.end

Figure 9.5 - Temporal referential integrity

9.4.2 Normalized history
So, to develop a consistent temporal database, we must enforce some constraints on
the non temporal schema:

1. Each entity table has a primary key. Its components are stable: they cannot be
modified. Its components are not reusable: the values of the primary key of
an entity that has been deleted cannot be assigned to another entity. These
properties ensure that all the states of a definite entity can be gathered without
any ambiguity.

2. The target of each foreign key is the primary key of the referenced table.

3. The schema of the database does not evolve. Studying schema evolution of
historical data is (far) beyond the scope of this studies.

In addition, the history of an entity must satisfy the following properties:

4. There is no gap in its history. This means that each state s1, except the last one,
is followed by another state s2 such that s2.end = s2.start. States s2 and s2 are
said consecutive. A history that includes no gap is called complete.

5. Two consecutive states are distinct. They must have at least one different at-
tribute value.

6. The duration of a state is at least one time unit. This means that start < end.

7. At any time, an entity is in one state only. Two different states may not over-
lap.

There is another constraint on the events that will create the history:

8. For each entity, the modification events occur chronologically. This means
that, at any time, the value of start of the last state of an entity is higher than
those of all its other states. Making it possible to change past states (for in-

T
hp1 hp2project history

employee history he

10 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

stance to correct errors) would require a bitemporal history, which would be
much more complicated to manage and process.

A history that satisfies these constraints is called normalized. Weaker forms of
history may be considered and coped with. In a non normalized history,

– gaps may exist,
– consecutive states may be value-equivalent (their columns have exactly the

same values),
– two states may overlap provided they are value-equivalent.

Such forms usually appear in the result set of some temporal queries. They can be
normalized through the reduce and normalize operator. These issues will be studied
in the second part of the case study.

The 7th constraint is particularly critical: a history in which some entities have
more than one distinct state at some time point is considered corrupt. It must be
fixed before being processed.

9.5 Transaction and valid times

What kind of event exactly do columns start and end measure? If they specify the
time points at which changes occur in the application domain, that is, in the real
world, they refer to the valid time. If they specify the time at which information on
the changes is recorded in the database, they refer to the transaction time.

When an employee moves from a city to another one on September 1st, 2017
(2017-09-01), and if this fact is recorded in the database twenty days later, on 2017-
09-21, then 2017-09-01 is the valid time of this change while 2017-09-21 is its trans-
action time.

Both types of time are important. Let us consider a fact F that appears at time vT
and that has been recorded in the database at time tT. If we consider the database as
the repository of all the relevant knowledge on the application domain, then we can
say that fact F is officially known from time tT and officially unknown before. This
can have deep implication from the legal point of view. Ideally, we should associate
both valid and transaction times to the data, that is, record bitemporal data. Unfor-
tunately, the management and processing of bitemporal data is particularly complex,
so that we will consider one temporal dimension at a time only.

In the next sections, we will develop simple mechanisms that automate as far as
possible the management of temporal data according to each of these time
dimensions.

11

Printed 28/11/20

9.6 Managing transaction time historical data

Recording transaction time events enjoys a quite interesting property. Indeed, the
transaction time associated with an event typically is provided by the system clock.
This means that the user has no control on the values of the timestamps, so that the
time management can be fully automated. The user just has to tell: create this new
entity, modify these attributes of this existing entity and delete this existing entity. In
technical words, the data modification events will be created by issuing insert,
update and delete queries on the views describing the current states of the enti-
ties. This way, the users can ignore all the time management mechanics.

 From the SQL engine perspective, these transaction time values are obtained
through register current_timestamp, that returns the current system time down
to the millisecond. Whether this precision is appropriate depends on the pace of the
events. In some cases, it will be far too detailed, for instance in administrative tasks,
where a delay of one day generally is the rule. In other cases, this precision will be
too coarse, as for a web server that processes several hundreds of requests per
second.

Whether the application domain is subject to slow events or to fast events, this
choice may entail three important consequences.

1. A high time precision requires, in the ISO format (YYYY-MM-
DD HH:MM:SS:.mmm), a string of 23 bytes, that is, 46 additional bytes per
state. In a fast evolving system, where an entity may be subject to thousands
of modification events, timestamping states will consume a lot of space.10

2. Even if we choose the most fine-grained precision, there is no guarantee that
two events affecting the same entity will always be assigned different times-
tamps. In such cases, some modifications of an entity will be recorded with the
same timestamp, leading the database to lose some of these updates.

3. To simulate the evolution of systems with slow events, such as administra-
tions, collecting real-time data to build test datasets, as we will do in these
studies, would take months and even years, which would be unrealistic.

To solve these problems, we add to historical base tables H_PROJECT and
H_EMPLOYEE a new table, called CLOCK (Script 9.1), in which we store the times-
tamps of events (in column TTime) whenever they occur. A unique integer number is
assigned to these time points, acting as time id (column TimeID). Columns start and
end in historical tables will contains such time ids instead of actual timestamps,
whatever the granularity of the latter. Column TimeID is the primary key of CLOCK
but column TTime is not unique.

10. Actually, this space depends on the internal representation of temporal data. For instance,
datetime values can be coded as julian day, which itself is implemented by a floating point
number spanning 8 or 16 bytes. See https://en.wikipedia.org/wiki/Julian_day for more detail.
Julian day arithmetics is available as UDF functions in SQLfast.

12 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

Script 9.1 - Table CLOCK stores the time points of the events

Historical table H_PROJECT and H_EMPLOYEE can now be specified (Script 9.2).
Considering the nature of the application domain of this case study, representing
time points by dates seems quite sufficient.

Script 9.2 - Historical tables recording the evolution of project and employee entities

Figures 9.6 and 9.7 show the evolution of project and employee entities. Table Clock
that translates abstract time points into actual dates is shown in Figure 9.8. The
contents of table H_PROJECT shows an interesting fact: a third project, named
SURVEYOR, was started on time 12 but was closed on time 36, so that it does not
exist any more and does not appear in the current state of the database (Figure 9.1).

+-----------+----------------------+--------+-------+--------+
| TITLE | THEME | BUDGET | start | end |
+-----------+----------------------+--------+-------+--------+
AGRO-2000	Crop improvement	65000	21	36
AGRO-2000	Crop improvement	75000	36	41
AGRO-2000	Crop improvement	82000	41	999999
BIOTECH	Biotechnology	180000	2	7
BIOTECH	Genetic engineering	160000	7	9
BIOTECH	Genetic engineering	120000	9	20
BIOTECH	Genetic engineering	140000	20	44
BIOTECH	Biotechnology	140000	44	999999
SURVEYOR	Satellite monitoring	310000	12	18

create table CLOCK(
 TimeID integer not null primary key autoincrement,
 TTime varchar(23) not null);

create table H_PROJECT(
 TITLE char(20) not null,
 THEME char(22) not null,
 BUDGET decimal(8) not null,
 start integer not null,
 end integer not null default 999999,
 primary key (TITLE,start));

create table H_EMPLOYEE(
 CODE char(5) not null,
 NAME char(10) not null,
 SALARY integer not null,
 CITY char(10) not null,
 PROJECT char(20) not null,
 start integer not null,
 end integer not null default 999999,
 primary key (CODE,start));

13

Printed 28/11/20

| SURVEYOR | Satellite monitoring | 375000 | 18 | 31 |
| SURVEYOR | Satellite monitoring | 345000 | 31 | 40 |
+-----------+----------------------+--------+-------+--------+

Figure 9.6 - History of PROJECT entities

+------+-----------+--------+----------+-----------+-------+--------+
| CODE | NAME | SALARY | CITY | PROJECT | start | end |
+------+-----------+--------+----------+-----------+-------+--------+
A237	Antoine	4000	Grenoble	AGRO-2000	24	30
A237	Antoine	3800	Grenoble	BIOTECH	30	33
A237	Antoine	3800	Grenoble	AGRO-2000	33	999999
A68	Albert	3200	Toulouse	BIOTECH	8	13
A68	Albert	3700	Toulouse	SURVEYOR	13	26
A68	Albert	3900	Paris	SURVEYOR	26	39
C45	Carlier	3100	Lille	BIOTECH	11	22
C45	Carlier	3400	Lille	AGRO-2000	22	28
C45	Carlier	3100	Lille	BIOTECH	28	999999
D107	Delecourt	3800	Grenoble	SURVEYOR	15	17
D107	Delecourt	4100	Genève	SURVEYOR	17	27
D107	Delecourt	4100	Grenoble	SURVEYOR	27	35
D107	Delecourt	3300	Grenoble	BIOTECH	35	999999
D122	Declercq	3200	Paris	BIOTECH	10	16
D122	Declercq	3800	Paris	SURVEYOR	16	37
D122	Declercq	4100	Toulouse	AGRO-2000	37	42
G96	Godin	3400	Genève	BIOTECH	3	5
G96	Godin	3300	Genève	BIOTECH	5	23
G96	Godin	3900	Genève	AGRO-2000	23	29
G96	Godin	4100	Genève	AGRO-2000	29	38
G96	Godin	3900	Genève	AGRO-2000	38	999999
M158	Mercier	2900	Paris	BIOTECH	4	6
M158	Mercier	3000	Paris	BIOTECH	6	14
M158	Mercier	3600	Paris	SURVEYOR	14	34
M158	Mercier	3000	Paris	BIOTECH	34	999999
N240	Nguyen	3100	Toulouse	BIOTECH	19	25
N240	Nguyen	3700	Grenoble	SURVEYOR	25	32
N240	Nguyen	3700	Genève	AGRO-2000	32	43
+------+-----------+--------+----------+-----------+-------+--------+

Figure 9.7 - History of EMPLOYEE entities

+--------+------------+
| TimeID | TTime |
+--------+------------+
1	2017-07-24
2	2017-07-25
3	2017-07-27
4	2017-07-29
5	2017-07-30
6	2017-08-02
7	2017-08-06
8	2017-08-09
9	2017-08-11
10	2017-08-12
11	2017-08-14
...	...
43	2017-10-26
44	2017-10-27
+--------+------------+

Figure 9.8 - Table CLOCK records the time points of all the events and assigns them
a unique time Id

14 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

9.6.1 Current state of entities
Live entities are those that have an active current state, with an infinite future end
time, that is, according to our convention, with TimeID = 999999. So, they are quite
easy to select through the SQL views of Script 9.3. The current states of our example
database are shown in Figures 9.9 and 9.10.

Script 9.3 - Extracting the current states

+-----------+------------------+--------+
| TITLE | THEME | BUDGET |
+-----------+------------------+--------+
| AGRO-2000 | Crop improvement | 82000 |
| BIOTECH | Biotechnology | 140000 |
+-----------+------------------+--------+

Figure 9.9 - The current state of PROJECT entities

+------+-----------+--------+----------+-----------+
| CODE | NAME | SALARY | CITY | PROJECT |
+------+-----------+--------+----------+-----------+
A237	Antoine	3800	Grenoble	AGRO-2000
C45	Carlier	3100	Lille	BIOTECH
D107	Delecourt	3300	Grenoble	BIOTECH
G96	Godin	3900	Genève	AGRO-2000
M158	Mercier	3000	Paris	BIOTECH
+------+-----------+--------+----------+-----------+

Figure 9.10 - The current state of EMPLOYEE entities

The main interest of these views is that users will be able to manage data, that is,
create, modify and destroy entities, by merely executing insert, update and
delete SQL queries on these views, and not on the underlying historical tables.

9.6.2 Creating an entity
The nice property of transaction time management is that all data modification
actions can be performed on the current state of entities without worrying about
complicated temporal manipulations. Therefore, creating a new entity, cannot be
simpler:

create view PROJECT(TITLE,THEME,BUDGET)
as select TITLE,THEME,BUDGET
 from H_PROJECT
 where end = 999999;

create view EMPLOYEE(CODE,NAME,STATUS,CITY,PROJECT)
as select CODE,NAME,STATUS,CITY,PROJECT
 from H_EMPLOYEE
 where end = 999999;

15

Printed 28/11/20

insert into PROJECT(TITLE,THEME,BUDGET)
 values ('BIOTECH','Biotechnology',180000);

insert into EMPLOYEE(CODE,NAME,STATUS,CITY,PROJECT)
 values ('G96','Godin','F','Genève','BIOTECH');

The effect of such a query is to insert in table H_PROJECT (same for H_EMPLOYEE)
the following row:
 'BIOTECH','Biotechnology',180000,2,999999)

Value start = 2 is the TimeID value returned by the insertion of the current time in
table CLOCK and end=999999 tells that this state is active.

Now, we have to consider what must happen under the hood. The implementation
of insert operations will be coded in instead of triggers operating on views
PROJECT and EMPLOYEE.

Let us begin with the creation of project entities, that will be recorded by trigger
TRG_PRO_INSERT. Its body must execute three actions.

1. Checking that there is no known entity with the same entity Id.
We verify that there is no state, past or current, in H_PROJECT with the same
value of TITLE as the one we intend to insert, otherwise, we raise an exception
that cancels the insert operation:

 if exists(select * from H_PROJECT where TITLE = new.TITLE)
 raise_exception('duplicate entity PK');

2. Creating a time event and storing it in table CLOCK.
Theoretically, we would just store in table CLOCK the value of register
current_timestamp or current_date:

 insert into CLOCK(TTime) values(current_date);

This would be appropriate in a real temporal database, with real events
captured in real time, but certainly not in our modest case study! So, we will
generate artificial, but realistic time points. For instance through the
following query:
 insert into CLOCK(TTime)
 select addToDate(max(TTime),random_i(0,5))from CLOCK;

Function random_i(n1,n2) returns a random integer in interval [n1,n2] and
function addToDate(d,n) returns date d augmented by n days. This query
computes the most recent value of TTime in CLOCK, adds to it a random
number of days then inserts the result in CLOCK.11

3. Inserting data in H_PROJECT with the time ID just created.
The end column is automatically set to 999999 through it default clause.

11. Of course, table CLOCK must be initialized with something like:
 insert into CLOCK(TTime) values ('2017-07-24');.

16 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

 insert into H_PROJECT(TITLE,THEME,BUDGET,start)
 values (new.TITLE,new.THEME,new.BUDGET,

 (select max(TimeID) from CLOCK));

We are now ready to code this trigger (Script 9.4).

Script 9.4 - Trigger controlling the creation of a new project (transaction time)

Managing the creation of employee entities is similar to that of projects, with an
additional concern: controlling foreign key PROJECT. Indeed, the value of column
PROJECT of the new row must reference an active PROJECT entity. Hence the
statement:

if not exists(select * from H_PROJECT
 where TITLE = new.PROJECT
 and end = 999999)
 raise_exception('target PROJECT does not exist');

The complete trigger is shown in Script 9.5.

Two comments
1. Our case study does not include unique keys. Their control can be less strict

than that of primary key. Verifying that there is no active entity with the same
value of the unique key may be sufficient:

 if exists(select * from H_PROJECT
 where THEME = new.THEME and end = 999999)

 raise_exception('duplicate unique key');

2. The way triggers are coded is strongly dependent on the DBMS. For example,
the body of an SQLite trigger is a pure sequence of SQL queries. The excep-
tion itself is specified through function raise() in a select query:

 select raise(ABORT,'duplicate entity PK')
 where exists(select * from H_PROJECT
 where TITLE = new.TITLE);

create trigger TRG_PRO_INSERT instead of insert on PROJECT
begin
 if exists(select * from H_PROJECT where TITLE = new.TITLE)
 raise_exception('duplicate entity PK');

 insert into CLOCK(TTime)
 select addToDate(max(TTime),random_i(0,5)) from CLOCK;

 insert into H_PROJECT(TITLE,THEME,BUDGET,start)
 values(new.TITLE,new.THEME,new.BUDGET,
 (select max(TimeID) from CLOCK));
end;

17

Printed 28/11/20

Script 9.5 - Trigger controlling the creation of a new employee (transaction time)

9.6.3 Evolution of an entity
To modify the state of an entity, a simple, non temporal update query will suffice:

update PROJECT
set THEME = 'Genetic engineering',
 BUDGET = 160000
where TITLE = 'BIOTECH';

update EMPLOYEE
set PROJECT = 'AGRO-2000',
 SALARY = 3900
where CODE = 'G96';

Let us suppose that

1. the update of project BIOTECH occurs at a time point with TimeID = 7

2. the current state of this project, just before the modification, is the following:
 ('BIOTECH','Biotechnology',180000,2,999999)

The translation of the modification requires two actions. First we close the current
state by modifying its end column:
 ('BIOTECH','Biotechnology',180000,2,7)

Then we insert a new current state which starts at time point 7:
 ('BIOTECH','Genetic engineering',160000,7,999999)

create trigger TRG_EMP_INSERT instead of insert on EMPLOYEE
begin

 if exists(select * from H_EMPLOYEE where CODE = new.CODE)
 raise_exception('duplicate Entity PK');

 if not exists(select * from H_PROJECT
 where TITLE = new.PROJECT
 and end = 999999)
 raise_exception('target PROJECT does not exist');

 insert into CLOCK(TTime)
 select addToDate(max(TTime),random_i(0,5)) from CLOCK;

 insert into H_EMPLOYEE(CODE,NAME,SALARY,CITY,PROJECT,start)
 values(new.CODE,new.NAME,new.SALARY,new.CITY,
 new.PROJECT,(select max(TimeID) from CLOCK));
end;

18 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

Now, the history of project BIOTECH comprises two states. The implementation of
update operations will be coded in instead of triggers acting on views
PROJECT and EMPLOYEE.

The trigger controlling the evolution of projects, named TRG_PRO_UPDATE,
must perform five actions.

1. Verifying that the entity is active.
No action is required: only active states are visible through view PROJECT.
Since no modification is applied to a non-existent entity, no exception can be
fired in this case.

2. Verifying that at least one attribute is modified.
Quite straightforward:

 if new.THEME = old.THEME and new.BUDGET = old.BUDGET
 raise_exception('no attribute modified');

3. Creating a time event and storing it in table CLOCK.
Same as for insert.

4. Close the current state
The Id of the time point just created is extracted and assigned to column end:

 update H_PROJECT
 set end = (select max(TimeID) from CLOCK)
 where TITLE = old.TITLE and end = 999999;

5. Insert a new current state.
Same as for insert.

 insert into H_PROJECT(TITLE,THEME,BUDGET,start)

 values(old.TITLE,new.THEME,new.BUDGET,
 (select max(TimeID) from CLOCK));

We notice that the value of column TITLE (the primary key) is left unchanged
(old.TITLE), whatever the new value possibly provided by the user.

The complete trigger is given in Script 9.6.
The trigger controlling the evolution of employees is similar to that of projects but it
must cope with a new constraint: is a new project is specified for the employee, this
project must exist and be active:

if new.PROJECT <> old.PROJECT
and not exists(select * from H_PROJECT

 where TITLE = new.PROJECT
 and end = 999999)

raise_exception('target PROJECT does not exist');

The trigger for EMPLOYEE is shown in Script 9.7.

19

Printed 28/11/20

Script 9.6 - Trigger controlling the modification of a project (transaction time)

Script 9.7 - Trigger controlling the modification of an employee (transaction time)

9.6.4 Deleting an entity
Deleting an entity follows the standard technique, once again applied to view
PROJECT and EMPLOYEE:

create trigger TRG_PRO_UPDATE instead of update on PROJECT
begin
 if new.THEME = old.THEME and new.BUDGET = old.BUDGET
 raise_exception('no attribute modified');

 insert into CLOCK(TTime)
 select addToDate(max(TTime),random_i(0,5)) from CLOCK;

 update H_PROJECT
 set end = (select max(TimeID) from CLOCK)
 where TITLE = old.TITLE and end = 999999;

 insert into H_PROJECT(TITLE,THEME,BUDGET,start)
 values(old.TITLE,new.THEME,new.BUDGET,
 (select max(TimeID) from CLOCK));
end;

create trigger TRG_EMP_UPDATE instead of update on EMPLOYEE
begin
 if new.NAME = old.NAME and new.SALARY = old.SALARY
 and new.CITY = old.CITY and new.PROJECT = old.PROJECT
 raise_exception('no attribute modified');

 if new.PROJECT <> old.PROJECT
 and not exists(select * from H_PROJECT
 where TITLE = new.PROJECT
 and end = 999999)
 raise_exception('target PROJECT does not exist');

 insert into CLOCK(TTime)
 select addToDate(max(TTime),random_i(0,5)) from CLOCK;

 update H_EMPLOYEE
 set end = (select max(TimeID) from CLOCK)
 where CODE = old.CODE and end = 999999;

 insert into H_EMPLOYEE(CODE,NAME,SALARY,CITY,PROJECT,start)
 values(old.CODE,new.NAME,new.SALARY,new.CITY,
 new.PROJECT,(select max(TimeID) from CLOCK));
end;

20 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

delete from PROJECT where TITLE = 'SURVEYOR';

delete from EMPLOYEE where CODE = 'D122';

Let us suppose that the current state of project SURVEYOR is the following:

('SURVEYOR','Satellite monitoring',345000,29,999999)

To delete this project (actually to close it) at time point 36, we just modify its end
column to give it value 36:

('SURVEYOR','Satellite monitoring',345000,29,36)

However, the foreign key of EMPLOYEE dictates specific constraints on delete oper-
ations on project entities. The current state of PROJECT can be closed only if the
referential constraint will be validated at operation completion. If some employees
still are working on the project we intend to delete, we must first take care of them:
either by deleting them as well or by preventing the project to be deleted, according
to the delete mode declared for this foreign key. If we choose the no action delete
mode, then we must first check that there is no employee working of project
SURVEYOR any more:

if exists(select * from H_EMPLOYEE
 where PROJECT = old.TITLE and end = 999999)
 raise_exception('dependent EMPLOYEEs still exist');

The code of the trigger that deletes PROJECT entities is shown in Script 9.8. The
trigger for EMPLOYEE entities is similar (not shown).

It is interesting to notice that the last state of a deleted entity provides two infor-
mations: one about the last update of the entity (or on its creation) and the other one
about its deletion.

Script 9.8 - Trigger controlling the deletion of a project (transaction time)

create trigger TRG_PRO_DELETE instead of delete on PROJECT
begin
 if exists(select * from H_EMPLOYEE
 where PROJECT = old.TITLE
 and end = 999999)
 raise_exception('dependent EMPLOYEEs still exist');

 insert into CLOCK(TTime)
 select addToDate(max(TTime),random_i(0,5)) from CLOCK;

 update H_PROJECT
 set end = (select max(TimeID) from CLOCK)
 where TITLE = old.TITLE and end = 999999;
end;

21

Printed 28/11/20

9.7 Managing valid time historical data

The term valid time refers to the time as it flows in the application domain, that is, in
the real world.

Let us study the behavior of temporal data that describe what happens in the real
world. We can keep the same data structures as in Section 9.6 to store temporal data
except for the nature of columns start and end which are of type date (or
datetime or timestamp, according to the time granularity) instead of integer.
Now, the values of start and end are those provided by users. They will need addi-
tional checking and control.

To make the process manageable, we will impose a constraint on the temporal
sequence of the events affecting each entity:12

the state changes of an entity are recorded in chronological order of their
occurrence. Indeed, notifying a change that occurred before the last
recorded event will require a potentially complex reorganization of the
history of the entity in which some closed states could have to be deleted,
split or merged.

9.7.1 Current state of entities
We still use constant 9999-12-31 to indicate the infinite future that will be assigned to
the end column to indicate current states. The SQL views declared in Script 9.9
extract the description of the current project and employee entities13. The latter are
shown in Figures 9.11 and 9.12. Columns start and end now are assigned user data
and therefore are visible.

Script 9.9 - Extracting the current states

12. This constraint can be (partially) removed in other forms of historical data, for instance those
based on individual attribute history. Anyway, correctly coping with this scenarios requires a
bitemporal database.
13. These views cannot be declared with check option! Why?

create view PROJECT(TITLE,THEME,BUDGET,start,end)
as select TITLE,THEME,BUDGET,start,end
 from H_PROJECT
 where end = '9999-12-31';

create view EMPLOYEE(CODE,NAME,SALARY,CITY,PROJECT,start,end)
as select CODE,NAME,SALARY,CITY,PROJECT,start,end
 from H_EMPLOYEE
 where end = '9999-12-31';

22 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

 +-----------+------------------+--------+------------+------------+
 | TITLE | THEME | BUDGET | start | end |
 +-----------+------------------+--------+------------+------------+
 | AGRO-2000 | Crop improvement | 82000 | 2017-07-05 | 9999-12-31 |
 | BIOTECH | Biotechnology | 140000 | 2017-09-17 | 9999-12-31 |
 +-----------+------------------+--------+------------+------------+

Figure 9.11 - The current state of PROJECT entities (valid time)

+------+-----------+--------+----------+-----------+------------+------------+
| CODE | NAME | SALARY | CITY | PROJECT | start | end |
+------+-----------+--------+----------+-----------+------------+------------+
A237	Antoine	3800	Grenoble	AGRO-2000	2016-12-29	9999-12-31
C45	Carlier	3100	Lille	BIOTECH	2016-12-11	9999-12-31
D107	Delecourt	3300	Grenoble	BIOTECH	2017-04-03	9999-12-31
G96	Godin	3900	Genève	AGRO-2000	2017-05-19	9999-12-31
M158	Mercier	3000	Paris	BIOTECH	2017-01-14	9999-12-31
+------+-----------+--------+----------+-----------+------------+------------+

Figure 9.12 - The current state of EMPLOYEE entities (valid time)

9.7.2 Creating of an entity
To create an entity, we just execute an insert query on the PROJECT or
EMPLOYEE view:

insert into PROJECT(TITLE,THEME,BUDGET,start)
 values ('BIOTECH','Biotechnology',180000,'2014-11-18');

insert into EMPLOYEE(CODE,NAME,SALARY,CITY,PROJECT,start)
 values ('G96','Godin',3400,'Genève','BIOTECH','2014-11-23');

The effect of the first query is to insert in table H_PROJECT the following row, in
which value end = 9999-12-31 tells that this state is current:
 ('BIOTECH','Biotechnology',180000,'2014-11-18','9999-12-31')

The project entity we intend to create must have a primary key value that has never
been used before. Since the event date is provided by the user, we must check its
validity, through function isDate(d), that indicates whether value d is a valid date.
The trigger that controls the creation of PROJECT entities is shown in Script 9.10.

The creation of an EMPLOYEE entity needs an additional checking: the PROJECT
entity referenced by the value of column PROJECT must exist and be active. The
trigger associated with the creation of PROJECT entities is shown in Script 9.11.

9.7.3 Evolution of an entity
The state of an entity is modified through an update query on views PROJECT or
EMPLOYEE:

23

Printed 28/11/20

Script 9.10 - Trigger controlling the creation of a new project (valid time)

Script 9.11 - Trigger controlling the creation of a new employee (valid time)

update PROJECT
set start = '2015-02-27',
 THEME = 'Genetic engineering', BUDGET = 160000
where TITLE = 'BIOTECH';

update EMPLOYEE
set start = '2017-05-19', SALARY = 3900
where CODE = 'G96';

The execution of these queries requires two actions. First closing the current state by
modifying its end column:

 ('BIOTECH','Biotechnology',180000,
 '2014-11-18','2015-02-27')

then inserting a new current state which starts at time point 2015-02-27:

create trigger TRG_PRO_INSERT instead of insert on PROJECT
begin
 if exists(select * from H_PROJECT where TITLE = new.TITLE)
 raise_exception('duplicate entity PK');

 if not isDate(new.start)
 raise_exception('invalid start date');

 insert into H_PROJECT(TITLE,THEME,BUDGET,start)
 values (new.TITLE,new.THEME,new.BUDGET,new.start);
end;

create trigger TRG_EMP_INSERT instead of insert on EMPLOYEE
begin
 if exists(select * from H_EMPLOYEE where CODE = new.CODE)
 raise_exception('duplicate entity PK');

 if isNotDate(new.start)
 raise_exception('invalid start date');

 if not exists(select * from H_PROJECT
 where TITLE = new.PROJECT
 and end = '9999-12-31');
 raise_exception('target PROJECT does not exist');

 insert into H_EMPLOYEE(CODE,NAME,SALARY,CITY,PROJECT,start)
 values (new.CODE,new.NAME,new.SALARY,
 new.CITY,new.PROJECT,new.start);
end;

24 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

 ('BIOTECH','Genetic engineering',160000,
 '2015-02-27','9999-12-31')

Checking the value of column start is a bit more complex than that required in
insert queries. Not only this data must be syntactically correct (function isDate)
but the chronological order must be satisfied. This means that the new value of start
must be greater than that of the current state of the entity. Technically:

 if not isDate(new.start)
 or new.start <= (select start from H_PROJECT
 where TITLE = new.TITLE
 and end = '9999-12-31')
 raise_exception('invalid start date');

Controlling referential integrity when updating an employee also is a bit more tricky
than for transaction time. Of course, the target project must be active but this is not
sufficient: this project must also have existed at the start time of the updated
employee. For example, if the employee is claimed to work on project AGRO-2000
since 2016-08-01, this update must be rejected because this project started on 2016-
08-31 only.

 if new.PROJECT <> old.PROJECT
 and not (exists(select * from H_PROJECT
 where TITLE = new.PROJECT
 and end = '9999-12-31')
 and new.start >= (select min(start)
 from H_PROJECT
 where TITLE = new.PROJECT))
 raise_exception('target PROJECT does not exist');

As in the transaction time triggers, the value of the entity id (PROJECT.TITLE and
EMPLOYEE.CODE) must be preserved, even if the user tries to modify it.

Suggested triggers controlling the evolution of projects and employees are shown
in Scripts 9.12 and 9.13. The role of the when clause will be explained in the next
section.

create trigger TRG_PRO_UPDATE instead of update on PROJECT
when new.end = '9999-12-31'
begin
 if new.THEME = old.THEME and new.BUDGET = old.BUDGET
 raise_exception('no attribute modified');

 if isNotDate(new.start)
 or new.start <= (select start from H_PROJECT
 where TITLE = new.TITLE
 and end = '9999-12-31')
 raise_exception('invalid start date'); ./..

25

Printed 28/11/20

Script 9.12 - Trigger controlling the modification of a project (valid time)

Script 9.13 - Trigger controlling the modification of an employee (valid time)

9.7.4 Deleting an entity
Deleting an entity does not follow the technique developed for transaction time.
Indeed, the query must convey a user data, namely the deletion date, with which the
current state will be closed. Therefore a delete query cannot work:

 update H_PROJECT
 set end = new.start
 where TITLE = old.TITLE and end = '9999-12-31';

 insert into H_PROJECT(TITLE,start,THEME,BUDGET)
 values (old.TITLE,new.start,new.THEME,new.BUDGET);
end;

create trigger TRG_EMP_UPDATE instead of update on EMPLOYEE
when new.end = '9999-12-31'
begin
 if new.NAME = old.NAME and new.SALARY = old.SALARY
 and new.CITY = old.CITY and new.PROJECT = old.PROJECT
 raise_exception('no attribute modified');

 if isNotDate(new.start)
 or new.start <= (select start from H_EMPLOYEE
 where CODE = new.CODE
 and end = '9999-12-31')
 raise_exception('invalid start date');

 if new.PROJECT <> old.PROJECT
 and not (exists(select * from H_PROJECT
 where TITLE = new.PROJECT
 and end = '9999-12-31')
 and new.start >= (select min(start)
 from H_PROJECT
 where TITLE = new.PROJECT))
 raise_exception('target PROJECT does not exist');

 update H_EMPLOYEE
 set end = new.start
 where CODE = old.CODE and end = '9999-12-31';

 insert into H_EMPLOYEE(CODE,NAME,SALARY,CITY,PROJECT,start)
 values (old.CODE,new.NAME,new.SALARY,new.CITY,new.PROJECT,
 new.start);
end;

26 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

delete PROJECT where TITLE = 'SURVEYOR';

Instead, we will use a special version of the update query, that only changes the
value of the end attribute of the entity:

update PROJECT set end = '2017-05-19' where TITLE = 'SURVEYOR';

Let us suppose that the last current state of project SURVEYOR is the following:

('SURVEYOR','Satellite monitoring',345000,
 '2016-12-20','9999-12-31')

If this project was closed on May 19, 2017, then its new last state will be:

('SURVEYOR','Satellite monitoring',345000,
 '2016-12-20','2017-05-19')

Like in project updating, we must check the validity of the end date. In addition, we
verify than no active employee is still working on this project any more. All this is
implemented in trigger TRG_PRO_DELETE (Script 9.14).

Script 9.14 - Trigger controlling the deletion of a project (valid time)

create trigger TRG_PRO_DELETE instead of update on PROJECT
when new.end < '9999-12-31'
begin
 if isNotDate(new.end)
 or new.end <= (select start from H_PROJECT
 where TITLE = new.TITLE
 and end = '9999-12-31')
 raise_exception('invalid end date');

 if exists(select * from H_EMPLOYEE
 where PROJECT = old.TITLE
 and end = '9999-12-31')
 raise_exception('dependent EMPLOYEEs still exist');

 update H_PROJECT
 set end = new.end
 where TITLE = new.TITLE and end = '9999-12-31';
end;

27

Printed 28/11/20

9.8 From entity-based to tuple-based history

The discussion of entity-based temporal data can be generalized to more abstract
patterns in which the data describe the history of a series of time-varying columns,
whatever the meaning one assigns to this assembly.

For example, a row may represent a relationship between two (or more) entities
that held during a specified period. This row would comprise the primary keys of
the entities, possibly some additional data associated with this relationship, and an
interval. Let us suppose that an employee can at any time work on more than one
project. The schema of our example database must then be modified: column
PROJECT of H_EMPLOYEE is removed and replaced by a new table, called
H_WORK_ON, with columns (CODE,TITLE,start,end) and primary key (CODE,
TITLE,start).

As another example, we could extract from table H_EMPLOYEE columns
(PROJECT,CITY,start,end) that tells from which cities the employees who worked
on which project came and during which periods.14

To cope with such various interpretation of temporal data, we qualify such
temporal table tuple-based.15

9.9 Alternative temporal database models

The data organization of temporal databases that we have developed in this study
(entity-based history) is both intuitive and easy to manage. As we will show in the
next part of this study, it is also (fairly) easy to process. However, there are quite a
lot of alternative ways to organize historical data in a database. We will mention and
briefly discuss some of them.

9.9.1 Table horizontal splitting
If processing the current states of the entities is the highest priority (anyway, it is the
most frequent use of a database), then it can be more efficient to split each historical
table into a main table (called, say, EMPLOYEE) that contains all the current states
and another, secondary table (called H_EMPLOYEE) in which all past states are
stored.16

This way, the main table will be managed and processed in a much more efficient
way: smaller table, shorter scans, smaller and faster indexes.

14. This extraction will be discussed in the second part of this study under the name temporal
projection.
15. A tuple is a data structure formed by a series of t values (kind of generalization of couple,
triple, etc.) Tuple is the theoretical name of row in a table.
16. This is the way several DBMS implement transaction time historical data.

28 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

This distribution of current and past states in two different tables may make
temporal processing more complex. A straightforward solution consists in recording
current states both in the historical table and in the current state table.

9.9.2 Table vertical splitting
In many historical tables, data management maintains the history of some columns,
called time-varying columns, while for the others, called constant columns, only the
last state is recorded, because they are never updated or because there is no need to
keep their history.

In an entity-based history table, the values of constant columns of an entity are
duplicated in all the state rows of this entity. To reduce this waste of space, we can
collect all the constant columns, included the components of the primary key, in a
table while the other columns (together with the components of the primary key) are
gathered into a standard temporal table.

9.9.3 Attribute-based history
The Entity-based organization has a major drawback: when one attribute changes,
all the values of the other attributes are copied in the new current state, therefore
creating important redundancies. In the attribute-based organization, the history of
each attribute is stored in an independent historical table. When an attribute changes,
only its historical table is affected. This model can be studied as the Column-
oriented data model, discussed in study Schema-less databases - Part 1, to which a
temporal dimension is added.

The history of the employee population is implemented into four tables (as many
as there are attributes, primary key excluded), two of which are represented in
Figure 9.13.

+------+--------+-------+--------+ +------+----------+-------+--------+
| CODE | SALARY | start | end | | CODE | CITY | start | end |
+------+--------+-------+--------+ +------+----------+-------+--------+
A237	4000	24	30		A237	Grenoble	24	999999
A237	3800	30	999999		A68	Toulouse	8	26
A68	3200	8	13		A68	Paris	26	39
A68	3700	13	26		C45	Lille	11	999999
A68	3900	26	39		D107	Grenoble	15	17
C45	3100	11	22		D107	Genève	17	27
C45	3400	22	28		D107	Grenoble	27	999999
C45	3100	28	999999		D122	Paris	10	37
D107	3800	15	17		D122	Toulouse	37	42
D107	4100	17	35		G96	Genève	3	999999
D107	3300	35	999999		M158	Paris	4	999999
D122	3200	10	16		N240	Toulouse	19	25
D122	3800	16	37		N240	Grenoble	25	32
D122	4100	37	42		N240	Genève	32	43
G96	3400	3	5	+------+----------+-------+--------+				
G96	3300	5	23					
G96	3900	23	29					
G96	4100	29	38					

29

Printed 28/11/20

G96	3900	38	999999
M158	2900	4	6
M158	3000	6	14
M158	3600	14	34
M158	3000	34	999999
N240	3100	19	25
N240	3700	25	43
+------+--------+-------+--------+

Figure 9.13 - Independent historical tables H_SALARY and H_CITY store the evolu-
tion of two attributes of employees.

The triggers that control the creation and deletion of entities are fairly straightfor-
ward. Scripts 9.15, 9.16, 9.17 manage the historical attribute tables according to the
transaction time dimension. When the condition of execution are met, the operation
is distributed among all the historical tables. Adaptation to valid time is as easy.

We notice that, in the trigger controlling the update operation (Script 9.16), only
attribute tables corresponding to a change are affected.

Script 9.15 - Inserting the data of a new employee in an attribute-based historical
database (transaction time)

create trigger TRG_EMP_INSERT instead of insert on EMPLOYEE
begin
 if exists(select * from H_NAME where CODE = new.CODE)
 raise_exception('duplicate entity PK');

 if not exists(select * from H_THEME
 where TITLE = new.PROJECT
 and end = $future$)
 raise_exception('target PROJECT does not exist');

 insert into CLOCK(TTime)
 select addToDate(max(TTime),random_i(0,5)) from CLOCK;
 ...
 insert into H_STATUS(CODE,SALARY,start) values
 (new.CODE,new.SALARY,(select max(TimeID) from CLOCK));

 insert into H_CITY(CODE,CITY,start) values
 (new.CODE,new.CITY,(select max(TimeID) from CLOCK));
 ...
end;

create trigger TRG_EMP_UPDATE instead of update on EMPLOYEE
when new.NAME <> old.NAME or new.SALARY <> old.SALARY
 or new.CITY <> old.CITY or new.PROJECT <> old.PROJECT
 ./...

30 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

Script 9.16 - Updating the data of an employee in an attribute-based historical data-
base (transaction time)

Script 9.17 - Deleting the data of an employee in an attribute-based historical data-
base (transaction time)

begin
 if new.PROJECT <> old.PROJECT
 and not exists(select * from H_THEME
 where TITLE = new.PROJECT
 and end = $future$)
 raise_exception('target PROJECT does not exist');

 insert into CLOCK(TTime)
 select addToDate(max(TTime),random_i(0,5)) from CLOCK;
 ...
 if new.SALARY <> old.SALARY begin
 update H_SALARY
 set end = (select max(TimeID) from CLOCK)
 where CODE = old.CODE and end = 999999;

 insert into H_SALARY(CODE,SALARY,start) value
 (old.CODE,new.SALARY,(select max(TimeID) from CLOCK));
 end;

 if new.CITY <> old.CITY begin
 update H_CITY
 set end = (select max(TimeID) from CLOCK)
 where CODE = old.CODE and end = 999999;

 insert into H_CITY(CODE,CITY,start) values
 (old.CODE,new.CITY,(select max(TimeID) from CLOCK));
 end;
 ...
end;

create trigger TRG_EMP_DELETE
instead of delete on EMPLOYEE
begin
 insert into CLOCK(TTime)
 select addToDate(max(TTime),random_i(0,5)) from CLOCK;
 ...
 update H_SALARY
 set end = (select max(TimeID) from CLOCK)
 where CODE = old.CODE and end = 999999;

 update H_CITY
 set end = (select max(TimeID) from CLOCK)
 where CODE = old.CODE and end = 999999;
 ...
end;

31

Printed 28/11/20

Alternative trigger organization

In each of these triggers, all the operations on historical tables are gathered into a
single piece of code. A quite different organization could be thought of, in which a
specific update trigger is associates with each historical table (Script 9.18). The
change events are filtered with a when clause so that only the triggers of the tables in
which a change is required will fire. Of course, we must first get a new timestamp
from table CLOCK. This can be done with an additional trigger that just includes
statement insert into CLOCK(TTime) and that fires when at least one change is
observed.

Unfortunately, though this distributed organization may appear quite elegant, its
execution protocol may be less obvious. Indeed, we have created N + 1 triggers,
where N is the number of attributes that may change, and these triggers are of the
same type: same table (view EMPLOYEE), same event (update), same position
(instead of).

First, not all DBMS allow multiple triggers of the same kind. Secondly, the
trigger updating table CLOCK must fire before all the others. This means that the
DBMS must provide some way to specify in which order triggers of the same type
will fire. Most DBMS provide it, though often in non standard ways,17 except
SQLite, in which this order is arbitrary or undetermined.

Converting an entity-based history table to the attribute-based format is fairly
easy but requires a special operator that will be studied in the second part on the
case study: the temporal projection. The inverse conversion will be performed
through a temporal join, an operator that also will be described in the next part.

Script 9.18 - The trigger controlling changes of attribute Status of employee entities,
in a distributed trigger organization

17. In some DBMS, the order is explicitly specified in the DDL code of the trigger (Oracle [from
11g], InterBase and, to some extent, SQL Server) while in others, the order is that of trigger
creation (SQL standard, DB2, MySQL) or the alphabetical order of trigger names (PostgreSQL).

create trigger TRG_SALARY_UPDATE instead of insert on EMPLOYEE
when new.SALARY <> old.SALARY
begin
 update H_STATUS
 set end = (select max(TimeID) from CLOCK)
 where CODE = old.CODE and end = 999999;
 insert into H_SALARY(CODE,SALARY,start) values
 (old.CODE,new.STATUS,(select max(TimeID) from CLOCK));
end;

32 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

9.9.4 Event-based history
If we look at Figure 9.14 (copy of Figure 9.3), in which all the modification events
affecting project BIOTECH are positioned on the timeline, we could wonder why we
have not merely recorded these events instead of the successive states of the project.
This is what we develop in this section.

Figure 9.15 shows how events are described in what we could call the event-
based history of project BIOTECH. For each event, we record the entity primary key
(TITLE), the values of other attributes as they result from the operation, the time
point of the event and the nature of the operation. This fragment of history shows
that project BIOTECH has been created in time 2 then updated three times. We know
that the project still is active because no delete operation has been recorded yet.

The event-based history of all the projects of our study is shown in Figure 9.16.

Figure 9.14 - History of project BIOTECH (copy of Figure 9.3)

BIOTECH	Biotechnology	180000	2	create
BIOTECH	Genetic engineering	160000	7	update
BIOTECH	Genetic engineering	120000	9	update
BIOTECH	Genetic engineering	140000	20	update
BIOTECH	Biotechnology	140000	44	update

Figure 9.15 - The event-based history of project BIOTECH

+-----------+----------------------+--------+------+--------+
| TITLE | THEME | BUDGET | time | oper |
+-----------+----------------------+--------+------+--------+
AGRO-2000	Crop improvement	65000	21	create
AGRO-2000	Crop improvement	75000	36	update
AGRO-2000	Crop improvement	82000	41	update
BIOTECH	Biotechnology	180000	2	create
BIOTECH	Genetic engineering	160000	7	update
BIOTECH	Genetic engineering	120000	9	update
BIOTECH	Genetic engineering	140000	20	update
BIOTECH	Biotechnology	140000	44	update
SURVEYOR	Satellite monitoring	310000	12	create
SURVEYOR	Satellite monitoring	375000	18	update

T
 2 7 9 20 44 now

project BIOTECH starts <theme=’Biotechnology, budget=180.000>
change theme (Genetic engineering) and budget (160.000)

change budget (120.000)
change budget (140.000)

change again theme (Biotechnology)

present time

33

Printed 28/11/20

| SURVEYOR | Satellite monitoring | 345000 | 31 | update |
| SURVEYOR | Satellite monitoring | 345000 | 40 | delete |
+-----------+----------------------+--------+------+--------+

Figure 9.16 - The event-based history of all the projects

The event-based history of an entity type is controlled by three triggers as usual. The
trigger of Script 9.19 controls the creation of project entities with transaction time
dimension.

Script 9.19 - Controlling the creation of an entity in the event-based history model
(transaction time)

9.9.5 Document-oriented history
This organization is derived from the object model (also called document-oriented
model) described in study Schema-less databases - Part 3. It can be applied to the
entity-based and attribute-based models. The idea is to associate with each attribute
(except those forming the primary key) the list of values it has taken, each of them
completed by the list of the intervals during which it took this value.

Let us consider the example of the employee entity with CODE = C45. From its
creation (on 11) until time 22 (excluded), it was assigned salary 3100. On time 22,
this salary was changed to 3400. This value then changed to 3100 on 28 and is still
valid now (999999). So, the value of SALARY was 3100 in intervals [11,22] and
[28,999999] and 3400 in interval [22,28]. If we encode these facts in JSON,
we create a description that looks like this:

[{"value":3100,"intervals":[[11,22],[28,999999]]},
 {"value":3400,"intervals":[[22,28]]}]

This description is an array of JSON objects, each of them comprising two
attributes, namely "value" and "intervals". Attribute "value" specifies the salary
value while attribute "intervals" is an array of intervals. Each interval is an array of
two time points. Figure 9.17 shows the state of all the temporal attributes of
employee entity D107 from its creation until now.

create trigger TRG_PRO_INSERT instead of insert on PROJECT
begin
 if exists(select * from H_PROJECT where TITLE = new.TITLE)
 raise_exception('duplicate entity PK');

 insert into CLOCK(TTime)
 select addToDate(max(TTime),random_i(0,5)) from CLOCK;

 insert into H_PROJECT(TITLE,THEME,BUDGET,time,oper) values
 (new.TITLE,new.THEME,new.BUDGET,
 (select max(TimeID) from CLOCK),'create');
end;

34 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

CODE: D107
NAME: [{"value":"Delecourt", "intervals":[[15,999999]]}]
SALARY: [{"value":"3800", "intervals":[[15,17]]},
 {"value":"4100", "intervals":[[17,35]]}]
 {"value":"3300", "intervals":[[35,999999]]}]
CITY: [{"value":"Grenoble", "intervals":[[15,17],[27,999999]]},
 {"value":"Genève", "intervals":[[17,27]]}]
PROJECT:[{"value":"SURVEYOR", "intervals":[[15,35]]},
 {"value":"BIOTECH", "intervals":[[35,999999]]}]

Figure 9.17 - Temporal attributes of employee entity D107 represented by JSON
objects

Figure 9.18 is a representation of the history of employee entities according to the
document-oriented model. Each row of this table contains the complete history of an
employee entity. To make data more readable, we have replaced the fairly cumber-
some JSON syntax by a lighter, though still intuitive, format. In addition, infinite
future '999999' has been replaced by '--'.

+------+-----------+--------------+------------------+-------------------+
| CODE | NAME | Salaries | Cities | Projects |
+------+-----------+--------------+------------------+-------------------+
A237	Antoine	4000 [24,30]	Grenoble [24,--]	AGRO-2000 [24,30]
		3800 [30,--]		[33,--]
				BIOTECH [30,33]
A68	Albert	3200 [8,13]	Toulouse [8,26]	BIOTECH [8,13]
		3700 [13,26]	Paris [26,39]	SURVEYOR [13,39]
		3900 [26,39]		
C45	Carlier	3100 [11,22]	Lille [11,--]	BIOTECH [11,22]
		[28,--]		[28,--]
		3400 [22,28]		AGRO-2000 [22,28]
D107	Delecourt	3800 [15,17]	Grenoble [15,17]	SURVEYOR [15,35]
		4100 [17,35]	[27,--]	BIOTECH [35,--]
		3300 [35,--]	Genève [17,27]	
D122	Declercq	3200 [10,16]	Paris [10,37]	BIOTECH [10,16]
		3800 [16,37]	Toulouse [37,42]	SURVEYOR [16,37]
		4100 [37,42]		AGRO-2000 [37,42]
G96	Godin	3400 [3,5]	Genève [5,--]	BIOTECH [3,23]
		3300 [5,22]		AGRO-2000 [23,--]
		3900 [22,29]		
		[38,--]		
		4100 [29,38]		
M158	Mercier	2900 [4,6]	Paris [4,--]	BIOTECH [4,14]
		3000 [6,14]		[34,--]
		[34,--]		SURVEYOR [14,34]
		3600 [14,34]		
N240	Nguyen	3100 [19,25]	Toulouse [19,25]	BIOTECH [19,25]
		3700 [25,43]	Grenoble [25,32]	SURVEYOR [25,32]
			Genève [32,43]	AGRO-2000 [32,43]
+------+-----------+--------------+------------------+-------------------+

Figure 9.18 - Document-oriented history of employee entities (transaction time)

The document-oriented format of historical data can be derived from the entity-
based and attribute-based data, and conversely. The conversion algorithms will be
developed in the second part of this case study.

35

Printed 28/11/20

9.10 The scripts

The algorithms and programs developed in this study are available as SQLfast
scripts in directory SQLfast/Scripts/Case-Studies/Case_Temporal_DB. Actually, they
can be run from main script TDB-MAIN.sql, that displays the selection box of Figure
9.19 (the missing items will be added in the second part of this study).

Figure 9.19 - Selecting a temporal data model

These scripts are provided without warranty of any kind. Their sole objectives are to
concretely illustrate the concepts of the case study and to help the readers master
these concepts, notably in order to let them develop their own applications.

9.11 Some references

The scientific community has been very active on temporal databases since the
eighties and has produced thousands of contributions related to concepts, models
and query languages. Richard Snodgrass and Christopher Jensen have been among
the most prolific contributors, notably through the TSQL2 language, an SQL exten-
sion addressing the temporal dimension of data. Some of the concepts of this
language have been progressively (and very slowly!) incorporated into the SQL
standards. Nowadays, most major DBMS have extended their SQL offering with
temporal features inspired by TSQL2.

36 Case study 9 • Temporal databases - Part 1

Printed 28/11/20

A collection of must have references are available on the site of Richard
Snodgrass at the University of Arizona (https://www2.cs.arizona.edu/~rts/
publications.html).
– Jensen C. S. and Snodgrass R. T. Temporal Data Management, IEEE Trans. on

Knowledge and Data Engineering, Vol. 11, No 1, Jan. 1999, 9 pages.
A short survey of temporal database concepts and design. Free pdf version
available.

– Snodgrass, R., T. Developing Time-Oriented Database Applications in SQL,
2000, Morgan-Kaufmann, 528 pages.
An in-depth analysis of the most essential concepts and algorithms in temporal
database. Free pdf version available. More on this reference in the second part.

– Jensen C. S. and Snodgrass R. T. (editors). Temporal Database Entries for the
Springer Encyclopedia of Database Systems. 345 pages.
The collection of the entries of the Springer Encyclopedia of Database Systems.
related to temporal databases. Free pdf version available.

– See also webpage http://www.cs.arizona.edu/people/rts/sql3.html, entitled TSQL2
and SQL3 Interactions, examine how the proposals of temporal TSQL2 language
are being integrated in SQL standards and in some popular RDBMS.

A different model of temporal databases has been proposed by H. Darwen:
– Date C. J., Darwen H. and Lorentzos, N. L. Time and Relational Theory:

Temporal Databases in the Relational Model and SQL. Morgan-Kaufmann, 2014.
558 pages.

