Case study 8

Active databases

This study shows how advanced data structures of SQL can be used to
built smarter databases, in particular active databases, that are able to
react to external stimuli. It starts with a short reminder of the SQL data
structures, including some of these advanced constructs, namely check
constraints, views, generated columns and triggers. Then, it presents
some usual applications of active databases, such as integrity control,
redundancy management, updatable views, data modification logging,
alerters, type-subtype implementation, repair rules, temporal databases
and access control. Finally, it explores, through a simple but representa-
tive business application, the power of active databases as compared
with traditional application development. In this application, we
observe the impact of moving the control of business rules from the
programs to the database. This unusual application architecture
requires special static and dynamic validation techniques. In its conclu-
sion, this study briefly sketches the history of the trigger concept and
evaluates the benefits and disadvantages of its use in application devel-
opment.

Keywords. ECA rules, trigger, business rules, active database, DAG,
finding circuits, advanced SQL, data structure, check predicate, updat-
able view, derived data, inventory management, 2-tier architecture, 3-
tier architecture

Case study 8 ¢ Active databases

8.1
8.2

8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

8.11

8.12

Table of content

Introduction

The SQL data structures

8.2.1 Static structures

8.2.2 Basic constraints

8.2.3 Predicates (check constraints)
8.2.4 Derived data

8.2.5 Stored procedures

8.2.6 Triggers

8.2.7 Coping with the limitations of the trigger language
Basic applications

Integrity management

Non standard system behavior
Updatable view

Redundancy management and derived data
Data modification journaling

Alerters

Type-subtype implementation

8.10.1 About database design

8.10.2 The Type-subtype concept
8.10.3 Is-a relations in SQL3

8.10.4 Is-a relations in SQL2

8.10.5 The insert operations

8.10.6 TThe update operations
8.10.7 The delete operations

8.10.8 Automating type-subtype manager production
Other applications

8.11.1 Repair rules

8.11.2 Access control

8.11.3 Temporal databases

Building a business application
8.12.1 About the case

8.12.2 About the case study

Printed 23/9/20

8.13

8.14
8.15
8.16
8.17
8.18

8.19

8.20
8.21

8.22

The static structure of the database

8.13.1 The base tables

8.13.2 The transaction tables

8.13.3 The initial state of the database

8.13.4 The transactions

Implementation of the classical application architecture

Implementation as an active database

Extending the data structures

The user interface

The transactions

8.18.1 Registering a customer order

8.18.2 Executing a supplier order

8.18.3 Registering the payment of an invoice

8.18.4 Event architecture of the active database

Verification of an active database

8.19.1 Static analysis: checking trigger circuits

8.19.2 Dynamic analysis: tracing the execution of the active database
About the concept of process level in trigger tracing
Event-based tracing
Operation-based tracing

8.19.3 Replaying transactions

Limits of this case study

Conclusions, history and extensions

8.21.1 From deductive databases to triggers

8.21.2 Recursive programming

8.21.3 Modeling and design

8.21.4 Finally, what may active databases be good for?

8.21.5 Reference

The implementation

Appendix A - The initial state of the database

Appendix B - RETAIL application: task analysis

Appendix C - Circuit detection in directed graphs

Printed 23/9/20

4 Case study 8 ¢ Active databases

8.1 Introduction

The main goal of a database is to store data that describe the objects and the activi-
ties of a part of the real world, generally called its application domain. In addition to
the basic constructs through which this static view of the data is implemented
(mainly tables, columns and keys), relational DBMS also include more sophisticated
mechanisms that allow a database to better translate the facts and the rules of the
application domain. Check constraints, generated columns, views (notably updat-
able ones), stored SQL procedures and triggers are the most important of them. The
latter are particularly interesting in that they are the corner stone of so-called active
databases, that are designed to automatically react to external stimuli.

This study is intended to show how these data structures can be used to built smarter
databases. It starts with a short reminder of the SQL data structures, including some
of the most advanced constructs. Then, it presents some usual applications of active
databases. Finally, it explores, through a simple but complete business application,
the power of active databases as compared with traditional application development.

8.2 The SQL data structures

We know that the SQL language offers a rich set of constructs allowing us to create
databases that constitute reliable models of data oriented problems and of their solu-
tions. These constructs range from simple static structures, such as tables and
columns, to more sophisticated objects like predicates, views, stored procedures and
triggers. They all form the basic toolkit to create and manage active databases.

Let us briefly recall and describe them.

8.2.1 Static structures

Let us call static structures of a database the constructs that allow us to store data,
that is, the basic data containers. We recall their main constituents and their proper-
ties:

— A database comprises tables.

— A tableis structured into one or more columns. Each column is assigned a data
type, such as numeric, character string, date, blob and some others.

— Each data row is stored in a table. For each column of this table, each row
comprises one value of the column data type (or null, as will be reminded
below).

— Among the columns of each table, a subset can be declared its primary key. No
two rows of the table may include the same values of the primary key. The role
of this key generally is to uniquely identify the rows of the table.

Printed 23/9/20

— Among the columns of each table, subsets can be declared foreign keys. Each
value of a foreign key references a row in another table (or in its table itself).

8.2.2 Basic constraints

Three basic constraints can be specified on the static structures:

— Mandatory column: if a column is declared not null, then each row must
comprise a value for this column. Symbolically, we will say that it cannot take
the null value.

— Unigueness congtraint: the rows of a table are distinct. This property can be
ensured for a subset of the columns. The primary key is one way to assert a
uniqueness property!. If other subsets enjoy this property as well, they will be
declared through unique keys.

— Referential constraint: this constraint applies to a subset of column of a source
table wrt a target table. It states that, for any row of the source table, the values
of these columns also are those of a row of the target table. The preferred way
to ensure this constraint is to declare this subset of columns a foreign key.?

8.2.3 Predicates (check constraints)

The declaration of a table can include predicates, in the form of check constraints. A
check constraint comprises an SQL condition that must be satisfied (more precisely
not evaluated to False, which is a bit different) by each row of its table. In most
DBMS, this condition may only apply to values of the current row (or system regis-
ters, such as current_date), without reference to other rows or to other tables.

8.2.4 Derived data

Tables and columns constitute the basic data structures. From them, we can define
new tables (called views) and columns (called generated columns) the contents of
which derive through SQL or computation formulae.

— Views: A view is a virtual table of which only the definition, in the form of a
select query, is stored in the database. When a view is queried, its contents is
computed through this query, or at least the relevant part of this contents. Under
certain conditions the data of a view can be modified. i.e., adding, deleting and
modifying rows. In this case, the DBMS propagate the requested modifications
on the real data. Generally, a view can be used as a real table.

1. Though primary and unique keys are the preferred ways to ensure uniqueness, they are not the
only techniques. Uniqueness can also be verified by triggers.

2. In the same way, there are other techniques to ensure referential constraints, for example
through triggers, as in earlier versions of RDBMS.

Printed 23/9/20

6 Case study 8 ¢ Active databases

— Generated columns: A generated - or computed - column is a column the
values of which are computed by a formula from the values of other columns of
its row (or system registers, such as current_date). These values can be virtual,
in which case they are computed each time they are requested, or stored (or
persistent) in the database.

8.2.5 Stored procedures

An SQL stored procedure is a named sequence of SQL statements that is stored in
the database. It translates a data manipulation function shared by a community of
users. A stored procedure can be called by applications programs, by triggers and by
other stored procedures. If the concept of stored procedure is not available in the
DBMS, it can be simulated by triggers or UDF.

8.2.6 Triggers

SQL triggers are a concrete implementation of Event-Condition-Action rules (aka
ECA). They read: when this Event occurs and if this Condition is satisfied, then
execute this Action. An SQL trigger is a named procedure (the Action), also stored
in the database as a sequence of SQL statements, that will be automatically executed
as soon as some events occur (Event), provided the Condition is met. These events
comprise data modification actions: insert, update and delete, though some
DBMS also allow other events such as opening and closing the database, DDL oper-
ations, temporal events or abstract events created by the programs.

The complete definition of a trigger, in addition to its name, generally comprises
these components:

— the table or the view it is attached to
— the event(s) that trigger it: insert, delete, update (of any or certain columns)

— when it is executed with respect to the event (before, after or instead of the
action). An instead of trigger is generally defined on a view, explaining what to
do when a modification action is asked for execution.

— its scope or granularity: once for the action (for each statement) or for each
row affected (for each row)

— an optional condition that must be met in order for the body to be executed

— its body, which is a sequence of SQL statements. However, many DBMS
provide a richer language including variables and control statements such as if-
then-else and loops. An important statement is the one that cancels or aborts
the source event and raises an exception that can be caught by the application
program.

— the execution order when more than one trigger have been defined for the same
event on the same table.

Printed 23/9/20

Many DBMS provide a subset only of these components.? Triggers probably are the
most powerful feature of relational DBMS. However, they are particularly delicate
to use and to debug. Indeed, they rely on three different programming paradigms,
namely event-based, logic-based (through the when and the where clauses) and
procedural (within the body part). In addition, they have strong links with the trans-
action management policy of the DBMS.

As we will learn, the trigger mechanism is at the heart of active databases.

8.2.7 Coping with the limitations of the trigger language

The SQL-3 standard defines the body of a trigger as a sequence of QL statements.*
However, in most DBMS, the body of a trigger is a procedure written in a general-
purpose language comprising, besides SQL statements, standard constructs such as
variables and if-then-else control statements. We show below that we can easily
compensate for the lack of such constructs. We also address the way a trigger can
call an external procedure.

Simulating variables

Usually, a value used in several statements of the trigger is stored in a local variable.
This is particularly recommended if the acquisition cost of this value is high, for
instance, if it is computed by an aggregation query.

If the concept of local variable is missing, a technical table containing a single
row, where each column implements a variable can be used instead, as illustrated by
table V in Script 8.23.

create table V(A integer, B real, C char(2));

create trigger ...
begin

insert into V(A,B)
select count (*), avg(Account) from CUSTOMER;
update V set C = 'Cl';

update CUSTOMER
set CAT = (select C from V) ;
where Account > (select B from V) ;
delete from V;

end;

Script 8.23 - Single-row table V acts as a series of local variables

3. This is the case of SQLite: instead of triggers on views only, no for each statement clause, the
trigger body is a pure sequence and trigger execution order is undefined.
4. SQLite strictly complies with this definition

Printed 23/9/20

8 Case study 8 ¢ Active databases

Simulating if-then-else statements

If the trigger language of the DBMS does not include if-then-else alternative control
statement, then Script 8.24, in which <C>, <C1> and <C2> denote arbitrary SQL
conditions, is invalid.

create trigger TRG DEL_T
before delete on T
begin
if (<C>)
then delete from S where <Cl>;
else update S set B = null where <C2>;
endif;
end;

Script 8.24 - Standard if-then-else alternative

There are two methods to transform this trigger into pure sequential code. The first
one consists in adding respectively <C> and not <C> to each branch of the alternative
(Script 8.25). If the evaluation of <C> is expensive, its result can be stored in a local
variable, that will be used in next statements as a substitute for <C>.

According to the second method, each branch is translated into a distinct trigger
the when clause of which decides whether it will fire (Script 8.26).

It is important to note that the validity of these transformations depends on
whether the result of the execution of the first branch affects the evaluation of the
second instance of condition <C>. For example, in Script 8.25, if <C> is true, the
first statement is executed. However, this execution may make condition <C> false,
in which case both branches of the alternative will be executed. This point will be
examined in more detail in Section 8.18.1.

create trigger TRG_DEL_T
before delete on T
begin
delete from S where <Cl> and <C>;
update S set B = null where <C2> and not <C>;
end;

Script 8.25 - Transformation of if-then-else alternative - Method 1

Printed 23/9/20

Calling an external procedure

Most DBMS allow the body of a trigger to ask the execution of a procedure written
in any proprietary or general programming language. Such a statement will gener-
ally look like this one:

create trigger TRG_DEL_T1
before delete on T
when <C>
begin

delete from S where <Cl>;
end;

create trigger TRG DEL T2
before delete on T
when not <C>
begin
update S set B = null where <C2>;
end;

Script 8.26 - Transformation of if-then-else alternative - Method 2

execute procedure sendMail (host,login,pw,...);

as in Postgresql, or, simply, as in Oracle PL/SQL.:

sendMail (host,login,pw, ...);

Unfortunately, the body of an SQLite trigger must be made up of a sequence of SQL
data modification queries only (insert, update, delete) plus a simple form of
select query initially intended to (conditionally) raise an exception. So, no explicit
procedure nor function call.

We will consider the following syntax of this variant of select query:

select <function> [where <condition>];

Where <functions denotes a UDF function that executes some desired action. So,
instead of

sendMail (host,login,pw,...);

we will write:

select sendMail (host,login,pw,...);

In the same way, instead of:

if (<conditions>) select sendMail (host,login,pw,...);

Printed 23/9/20

10 Case study 8 ¢ Active databases

we will write:

select sendMail (host,login,pw,...) where <conditions>;

If we find this syntax a bit awkward, we can improve it as follows:

set sendMail = select sendMail;

Then, wherever in the body of a trigger we want to write <something> in the
output window, we simply write:

SsendMails$ (host,login,pw, ...);

8.3 Basic applications

There are many applications of triggers suggested and described in the literature. We
will illustrate some of them in Sections 8.4 to 8.11.

8.4 Integrity management

While basic integrity constraints (see 8.2.2) are automatically controlled by the data-
base engine, the management of more advanced constraints must be explicitly
expressed into predicates, triggers or stored procedures. Constraints on the values of
a row generally can be translated into a check condition. In the example below
(Script 8.27) which defines the structure of table CUSTORDER (customer order), we
state that the order date must be less or equal to the current date and that the quantity
must be a positive number.

create table CUSTORDER (
OxrdID char (12) not null primary key,
DateOrd date not null,
CustID char(12) not null references CUSTOMER,
ItemID char(l16) not null references ITEM,
Qty integer not null,
Status varchar(20) not null,
constraint CH DateOrd check (DateOrd <= current date),
constraint CH Qty check(Qty > 0));

Script 8.27 - Controlling the values of columns DateOrd and Qty

Both constraints could have been controlled by a single check condition. In this
example, each constraint is named and is controlled by its own check condition to

Printed 23/9/20

1"

allow a more precise information to be sent to the application program. If we submit
the following statement:

insert into CUSTORDER
values ('2020-S33','2040-02-15','D-568"',15) ;

... the operation is aborted and this message is sent to the program:

CHECK constraint failed: CH_DateOrd

A constraint that makes use of values external to the current row (i.e., values of other
rows in the same table or in other tables) will be expressed by one or several triggers.

Let us consider that a customer order can be recorded only if the requested quan-
tity is not higher than the quantity available of the item referenced by column
ItemID. We assume that this quantity is stored in column Qavail of table ITEM, the
primary key of which is (ItemID).

Usually, a trigger that controls a constraint will check whether the constraint is
violated, in which case exception is raised (Script 8.28).

create trigger TRG ORDER QTY
before insert or update of Qty,ItemID on CUSTORDER
for each row
when new.Qty > (select Qavail from ITEM
where ItemID = new.ItemID)

begin

raise('Quantity error in order '||old.OrdID) ;
end;

Script 8.28 - Trigger controlling the values of column OrdQty (CUSTORDER side)

This trigger controls the value of Qty against three events affecting the data of
CUSTORDER table: inserting a new row, modifying the current value of Qty of an
existing row and changing the current item referenced by an existing row.

To fully control the evolution of the data, we must also ensure that any modifica-
tion that decreases the value of column Qavail of an ITEM row does not invalidate
the value of Qty of all the dependent CUSTORDER rows. Symbolically, the
constraint Qavail <= sum(Qty) must be maintained in any condition. This is left as an
exercise.

The basic integrity constraints, predicates and the kind of trigger shown above all
contribute to define the valid states of the database. Let’s say that checking whether
such constraints have been satisfied, we only need to examine the snapshot of the
data after the modification.

To control the valid transitions between states, we need to compare two snap-
shots, before and after the modification. Column Status of table CUSTORDER
records the evolution of an order through its successive processes: recording, vali-
dation, execution, payment, archiving, etc. So, the successive values of Status of a

Printed 23/9/20

12 Case study 8 ¢ Active databases

definite order must reflect the sequence of these processes: 'recorded' — 'validated'
— ... — 'executed' — 'paid' — 'archived'.

Checking that this order is respected can only be performed by triggers, in which
both previous and new states are simultaneously available through row aliases old
and new. The trigger shown in Script 8.29 checks that Status can be set to 'archived'
only if the previous value was 'paid'. old.Status denotes the value of Status before the
update and new.Status the new value it would take, should the update succeed.
Completing this code to address the other valid value transitions is straightforward.

create trigger TRG ORDER STATUS
before update of Status on CUSTORDER
for each row

when new.Status = 'archived' and old.Status <> 'paid'
begin

raise('Invalid Status update in '||old.OrdID) ;
end;

Script 8.29 - Checking valid Status value transitions

8.5 Non standard system behavior

The way the SQL engine reacts to data modification operations may not meet the
requirements of the users. Let us consider the foreign key construct, which is the
preferred way to enforce referential integrity. When an operation is likely to violate
referential integrity, the DBMS will either refuse it (no action, restrict), or execute
the operation then perform additional actions in order to make the data correct again
(cascade, set null, set default).

We suppose that our database comprises, among others, the two tables:
— CUSTORDER (0rdID, .. .), that records the data of customer orders

— DETAIL (OrdID, ItemID, ...), each row of which records the reference of
one of the item ordered by order OrdID.

Quite naturally, column OrdID of DETAIL is declared a foreign key to table
CUSTORDER. We have found it convenient to assign this foreign key a cascade
mode for delete and update operations. DETAIL rows can be deleted freely. However,
we wouldn’t like to see the last DETAIL row of a customer order being deleted. In
such a case, we could either prevent this last row to be deleted (a kind of reverse no
action mode) or execute an additional action, namely deleting the CUSTORDER row
(a kind of reverse cascade mode). This can be controlled through triggers. Let us
adopt the second rule: when the last detail of an order disappears, this order also

disappears.
This rule is implemented by the trigger of Script 8.30.

Printed 23/9/20

13

create trigger TRG LAST DETAIL
after delete on DETAIL
for each row

when (select count () from DETAIL where OrdID = 0ld.OrdID) = 0
begin

delete from CUSTORDER where OrdID = 01d.0rdID;
end;

Script 8.30 - Deleting a CUSTORDER row when its last dependent DETAIL row has
been deleted

8.6 Updatable view

In most DBMS, updating data through a view is allowed only in very limited cases.
For instance, the query that defines the view cannot include joins, subqueries, aggre-
gate functions but must include all the not null columns (therefore also the primary
key of the source table). This means that, in general, we can query the data through
the view but we must update them on the source table, which is particularly
awkward!

Thanks to appropriate triggers we can design SQL views that allow us to query
and update the data.

To show how we can build such views, we consider that the database contains the
following tables:

— CUSTOMER (CustID,Name,Address, ...), that records the data of the
customer,
— CUSTORDER (OrdID, CustID, ...), thatrecords the data of orders placed by

the customer

We would like to view the data of customer orders augmented with the name and the
address of the parent customer. This is what the definition of Script 8.31 gives us.

create view CUSTORDER FULL (OrdID,CustID,Name,Address, ...)
as select CustID,0.CustID,Name,Address

from CUSTORDER O, CUSTOMER C

where O.CustID = C.CustID;

Script 8.31 - A view that is not updatable (so far)

Typically, being based on a join, this view is not updatable. The SQL engine does
not understand what we mean when we ask it to execute insert, delete and

Printed 23/9/20

14 Case study 8 ¢ Active databases

update queries on this view. So, we need to explain our own interpretation of these
operations. This is why we define the triggers of Script 8.32.

Now, a query such as
update CUSTORDER FULL set Name='O''Neil' where OrdID='3017"';

becomes perfectly valid, so that the programmers can ignore the difference between
base tables and views!

create trigger TRG _CORD_ FULL INSERT
instead of delete on CUSTORDER FULL
begin
insert into CUSTORDER values (new.OrdID,new.CustID,...);
end;
create trigger TRG CORD FULL DELETE
instead of delete on CUSTORDER FULL
begin
delete from CUSTORDER where OrdID = 01d.OrdID;
end;
create trigger TRG CORD_ FULL UPDATE
instead of update of OrdID,Name,Address on CUSTORDER FULL

begin
update CUSTOMER
set Name = new.Name

where CustID = new.CustID and new.Name <> old.Name;

update CUSTOMER
set Address = new.Address
where CustID = new.CustID and new.Address <> old.Address;

update CUSTORDER
set OrdID = new.OrdID
where new.OrdID <> 01d.0rdID;

end;

Script 8.32 - The triggers that make view CUSTORDER _FULL updatable

8.7 Redundancy management and derived data

According to a popular proverb among database people, each real world fact must
be represented once and only once. So, theoretically, a normalized database includes
no redundant data. Practically, things may be different. It may be useful to record
some information in more than one place, or to record data derived from other data,
and this for various reasons.

Among them:

Printed 23/9/20

15

— Expressiveness and readability of the data structures. Some essential data
(from the point of view of users or even programmers) may be missing from
the database schema because they can be calculate from more elementary
values. Considering table CUSTORDER described in Script 8.27, a naive user
may be troubled by the absence of a column giving the amount of each order.
This amount is easy to compute for each row: we just multiply the value of Qty
by the unit price, supposedly stored in column UnitPrice of the referenced ITEM
row. So, adding a new column that stores this amount value provides a more
natural representation of customer orders, but at the cost of increased storage
space and processing time.

— Efficiency. Processing a customer order requires the extraction of additional
data from the CUSTOMER table (notably their name and address) and from the
ITEM table (the item unit price for example). By permanently maintaining a
copy of these data in each CUSTORDER row, we avoid two costly joins. This is
even more critical when the database is distributed among several sites. Some
data can be replicated in several sites to avoid internet transmission cost and
latency.

— Robustness against data corruption. It is usual to copy critical data in several
places. This makes it easier to recover them when a copy has been accidentally
or intentionally destroyed.

To illustrate the principles of redundancy management, we will develop further the
example of the amount of customer orders mentioned above.

First, we augment the schema of table CUSTORDER as follows (we ignore the
columns that are of no use in this development):

create table CUSTORDER (
OrdID char (12) not null primary key,

ItemID char (16) not null references ITEM
on update cascade
on delete cascade,

oty integer not null,

Amount integer not null,

o) 5

create table ITEM (
ItemID char (16) not null primary key,
UnitPrice integer not null,

o) 5

Script 8.33 - New computed column Amount is added to table CUSTORDER

The value of column Amount of CUSTORDER row ord is computed by this formula:

Printed 23/9/20

16 Case study 8 ¢ Active databases

ord.Amount = ord.Qty * (select UnitPrice
from ITEM
where ItemID = ord.ItemID)

Though Amount is a computed column, it cannot be declared a generated column
since its formula involves external columns. Therefore, we must rely on triggers to
make its values comply with the formula.’

Let us see this formula as an equality relation between two quantities. We have to
identify which events may alter this equality. The formula uses the data of two
tables, CUSTORDER and ITEM. In table CUSTORDER, three columns are involved,
ItemID, Qty and Amount. In table ITEM, two columns are involved, ltemID and Unit-
Price. The events of interest are those which modify the state of these objects. For
each of them, we decide the action to perform.

* Events of table CUSTORDER
— insert row: compute the value of Amount.
— update of ItemlID: change of referenced item; recompute the value of Amount.

update of Qty: recompute the value of Amount.
— update of Amount: forbidden.
— delete row: no effect.

* Events of table ITEM
— insert row: no effect (no customer order yet).

— update of ItemID: no action; automatically managed according to the cascade
update mode of the foreign key.

— update of UnitPrice: recompute the Amount value of all the dependent
CUSTORDER rows.

— delete row: no action; automatically managed according to the cascade delete
mode of the foreign key.

Now, we have enough information to build the triggers that preserve the equality
relation.

Managing CUSTORDER table

The insert event and the update of Qty and ItemID events can all be coped with
by a single trigger (Script 8.34).6

5. An alternative structure could be thought of: we add in CUSTORDER new column UnitPrice,
the value of which is that of column UnitPrice of the row referenced by ord.ltemID. This redun-
dancy is simple to manage (e.g., there is no need to control the value of Qty). Now, Amount can
be declared a generated column.

6. In SQLite, a trigger is fired by one event only. So, this trigger must be split into two distinct
triggers.

Printed 23/9/20

17

create trigger TRG_ORDER_MODIF

after insert, update of Qty,ItemID on CUSTORDER

for each row

begin
update CUSTORDER
set Amount = new.Qty* (select UnitPrice from ITEM

where ItemID = new.ItemID)

where OrdID = new.OrdID;

end;

Script 8.34 - Recalculation of derived column Amount due to events on table
CUSTORDER

Prohibiting the explicit modification of Amount can be done in several ways. The
most obvious is to revoke the right of updating this column from all users:

revoke update (Amount) on CUSTORDER from public;

Another technique uses a trigger that cancels any operation attempting to change the
value of Amount. The problem with this technique is that it will also cancel other
valid modifications requested by the same update statement.

Finally, we suggest a third technique that accepts the modification but silently
recovers the correct value through a trigger similar to that of Script 8.34. This leads
to the modified code of Script 8.35.

create trigger TRG_ORDER_MODIF
after insert, update of Qty,ItemID,Amount on CUSTORDER
for each row
begin
update CUSTORDER
set Amount = new.Qty* (select UnitPrice from ITEM
where ItemID = new.ItemID)
where OrdID = new.OrdID;
end;

Script 8.35 - Extending trigger 8.34 to prevent users from updating the Amount
column

Managing ITEM table
We only have to cope with update actions on UnitPrice (Script 8.36).

Printed 23/9/20

18 Case study 8 ¢ Active databases

create trigger TRG_ITEM MODIF

after update of UnitPrice on CUSTORDER

for each row

begin
update CUSTORDER
set Amount = Qty* (select new.UnitPrice from ITEM

where ItemID = new.ItemID) ;

where OrdID = new.OrdID;

end;

Script 8.36 - Propagating UnitPrice modification in table ITEM to the Amount column
in CUSTORDER table

8.8 Data modification journaling

We want to keep a precise record of data modification operations on a database. The
description of the operations can be written in a text file or in a table of the database
itself. We chose the latter approach and we create table JOURNAL, in which the
history of insert, update and delete operations affecting each table is recorded.

The content of journal entries depends on the objective we assign to the journal.
If the goal is to compute activity statistics, only minimal information will be needed,
such as a timestamp, the table name and the nature of the operation. We could want
to build a forward journal from which the operations can be replayed later if neces-
sary. In this case, we must record the complete description of the SQL operations.
Or, we could build a backward journal, that can be used to undoe some of the opera-
tions that have been successfully executed.

In this exercise, we describe the management of a forward journal. A journal
entry will comprise the following information:

— LogID : sequence number of the journal entry,

— OpTime: date (aaaa-mm-jj) and time (hh:mm: ss.mmm) of the operation,

— Operation: nature of the operation (‘insert', 'update’, 'delete’),

TableName: name of the table,
RowlID: primary key of the row,
— Arguments: detail of the operation, e.g., old/new values.

The structure of table JOURNAL is shown in Script 8.37.

Printed 23/9/20

19

create table JOURNAL (
LogID integer not null primary key autoincrement,
OpTime datetime not null,
Operation char (32) not null,
TableName varchar (64) not null,
RowID varchar (128) not null,
Arguments varchar (1024)) ;

Script 8.37 - Structure of the journal table

Three triggers are suggested to control insert (Script 8.38), update (Script 8.39)
and delete operations (Script 8.40). Function current timestamp full() isa
UDF7 (user-defined function) that returns, in ISO format, the current timestamp with
a precision of millisecond.

The arguments of the triggers controlling insert and update operations collect
the new column values in a character string in a format that makes it easy to extract
their individual values. Here we have chosen the CSV format, which is more concise
than XML and JSON.

create trigger TRG ORDER LOG INS
after insert on CUSTORDER
for each row
begin
insert into JOURNAL (OpTime,Operation, TableName, RowID, Argument)
values (current timestamp full(),
'insert',
'CUSTORDER' ,
new.OrdID,
'"!'| |new.DateOrd |
“' "1 | |lnew.CustID

,"'"| |new.ItemID
,'| |cast (new.Qty as char)
,""| |new.Status||'"") $;3

1

1

1
end;

Script 8.38 - Generating the JOURNAL entries for the insert operations

Let us execute this sequence of statements, applied to an empty table:

insert into CUSTORDER
values ('123','2020-02-16", 'B512"', 'PA45"',12, 'recorded"') ;
insert into CUSTORDER
values('184','2020-02-17"', 'HO54"', 'PA60"',5, 'recorded"') ;
delete from CUSTORDER where OrdID = '123';
insert into CUSTORDER
values ('270','2020-02-19', 'F400"', 'PH222"',2, 'recorded"') ;

7. This function is a member of UDF library SQLiteUDFlib.py of the SQLfast distribution.

Printed 23/9/20

20

Case study 8 ¢ Active databases

update CUSTORDER set Status =

'validated'

create trigger TRG_ORDER LOG_UPD

after update on
for each row
begin

CUSTORDER

where OrdID = '184';

insert into JOURNAL (OpTime,Operation, TableName, RowID, Argument)
values (current timestamp full(),

end;

'update"',

' CUSTORDER' ,

01d.0rdID,
'”'||case

',"'||case
',"'||Case
", | case

',"'||case

when
else
when
else
when
else
when
else
when
else

new.
.DateOrd end||'""'
new.
new.
new.
new.
new.

new

DateOrd = old.DateOrd then ''

CustID
CustID
ItemID
ItemID
Qty =

= 0ld.CustID then ''

end |

= old.ItemID then ''

end |

old.Qty then "'

cast (new.Qty as char) end
= old.Status then ''
new.Status end||'"");

new.

Status

Script 8.39 - Generating the JOURNAL entries for the update operations

create trigger TRG ORDER LOG DEL

after delete on
for each row
begin

CUSTORDER

insert into JOURNAL (OpTime,Operation, TableName, RowID)
values (current timestamp full(),

'delete',
'CUSTORDER''

0ld.0rdID)

end;

7

$is

Script 8.40 - Generating the JOURNAL entries for the delete operations

It will create the following state of table CUSTOMER.

+------- e i +-------- +-------- +----- to-m-m - +
| ordiD | DateOrd | CustID | ItemID | Qty | Status |
+------- +------------ +-------- +-------- +----- - +
| 184 | 2020-02-17 | HO54 | PRA6O | 5 | validated |
| 270 | 2020-02-19 | F400 | PH222 | 2 | recorded |
+------- tommm e m - +-------- +-------- +----- e i +

As to the the content of table JOURNAL, it will look like this one (shown in two parts

to make it readable):

Printed 23/9/20

21

+------- o m s s s m s mmm e mm e mmm o mm o +ommmmm e +ommmmm - m - - +----
| LogID | OpTime | Operation | TableName |
+-----=- s mm s m s s s +o-mmm - - - B i +----
| 1 | 2020-02-08 17:54:10.971 | insert | CUSTORDER |

| 2 | 2020-02-08 17:54:11.058 | insert | CUSTORDER |

| 3 | 2020-02-08 17:54:11.532 | delete | CUSTORDER |

| 4 | 2020-02-08 17:54:11.604 | insert | CUSTORDER |

| 5 | 2020-02-08 17:54:12.113 | update | CUSTORDER |
+------- o m s mm e m s m e mmm o m— - +---m - - m-- - - - +----
+------- - R +

| LogID | RowID | Arguments |
+-----=- +------- Bl +

| 1 | 123 | "2020-02-16","B512","PA45",12, "recorded" |

| 2 | 184 | "2020-02-17","H054","PA60",5, "recorded" |

| 3 | 123 | -- I

| 4 | 270 | "2020-02-19","F400", "PH222",2, "recorded" |

| 5 | 184 | UL ","","Validated" |
+------- +------- oo s s s e o s mm o m e m e m e m e — - —— - —- - +

We observe that this table provides sufficient information to rebuild the source SQL
DML queries.?

A complete application is available in script Scripts\Case-Studies\Case_Active
_DB/Data-modification-logging.sql.

8.9 Alerters

An alerter is a mechanism intended to inform some agent (e.g., a person or an
external process) about specific events that have occurred. It is somehow similar to
journaling, except that the information is sent in real time outside the database.

In the context of a database application, sending an email is a popular way to
transmit this information and, quite naturally, the sending agent is a trigger associ-
ated with the table in which the events occur.

Let us illustrate the concept of alerter with a table called STOCK, (Script 8.41) in
which we store the quantity on hand of a set of products (column QonHand).

Whenever a quantity q of a product is consumed, q is subtracted from the quan-
tity on hand of this product. When the latter quantity becomes too low, the employee
responsible for the resupply of this product receives a warning email. What too low
exactly means is specified by column Qresupply, that tells below what quantity a
resupply must be carried out.

For instance, row ('P001',100,20) indicates that product P001 has a quantity
on hand of 100 units and a resupply level of 20. When the value of QonHand falls
below that of Qresupply, it is time to replenish the stock.

8. Actually, this is only true for modification operations that apply to individual rows. For
multirow queries, such as this one: "delete from CUSTORDER where ItemID = 'PA45'",
that is likely to affect several rows, the journal will include a distinct entry for each of these rows.

Printed 23/9/20

22 Case study 8 ¢ Active databases

createOrReplaceDB PRODUCTS.db;

create table STOCK (
ProdID char (4) not null primary key,
QonHand integer not null,
Qresupply integer not null) ;

insert into STOCK wvalues ('P001',50,20),
("PO0O2"',40,10),
("PO03"',90,40) ;

Script 8.41 - Creating the test database

Script 8.42 shows the code of the trigger that implements the alerter. It fires when
the value of QonHand is modified in such a way that it crosses that of Qsupply, a
condition that can be translated as follows®:

old.QonHand >= new.Qresupply and new.QonHand < new.Qresupply

The action of the trigger is quite simple: it sends an email to the supply manager,
asking her to replenish the stock of the product that just gets out of stock.

The set statement builds the body of the mail and the exec statement sends the
mail to an SMTP server through the sendMail procedure. For obvious privacy
reasons, the critical sending parameters are acquired through an ask statement.

If we execute the following update queries,

update STOCK set QonHand = QonHand - 35 where ProdID = 'POOl';
wait 1000;
update STOCK set QonHand = QonHand - 25 where ProdID = 'P002';
wait 1000;
update STOCK set QonHand = QonHand - 60 where ProdID = 'P003';

.. the supply manager will receive two messages:

Quantity on hand of item #PO001
has dropped from 50 to 15
on 2020-04-13 11:31:33

Quantity on hand of item #P003
has dropped from 90 to 30
on 2020-04-13 11:31:35

9. This condition also addresses the simultaneous modification of column Qsupply.

Printed 23/9/20

23

ask host,login,pw =

[Initialize mail parameters]

Host: |Login: |Pw:;

set from = alert@acme.com;

set to

supply.manager@acme.com;

set subj = Replenishment required;

openDB PRODUCTS.db;

create trigger TRG STOCK ALERT
after update of QonHand on STOCK

for each row

when old.QonHand >= new.Qresupply
and new.QonHand < new.Qresupply

begin
set body

'Quantity on hand of item #'

old.ProdID

'
has dropped from '

cast (old.QonHand as char) | |' to '
cast (new.QonHand as char)

'
on '

| |datetime (current timestamp, 'localtime') ;

exec sendMail

closeDB;

('Shosts$', '$Slogins', 'Spws!',

'sfrom$', 'Stos$', "', 'html "',
'§subj§',body, '') ;

Script 8.42 - The trigger that implements the alerter

About the sendMail procedure

The sendMail procedure is a general-purpose procedure that sends an e-mail through
an SMTP server. It requires the following parameters:

sendMail (
Host,
Login,
Pw,
From,
To,
Cc,
Format,

Subject,

Body,
Attach)

HHHHHHHHEHHE

SMTP server address

(server) user id

(server) password

sender address

recipient address list
carbon-copy address list

message format: 'plain' or 'html'
subject text

body text

list of attached file names

In the SQLfast version, calling this procedure in the body of the trigger is slightly
different due to the limitation of the allowed syntax (see Section 8.2.7). The modi-
fied version is shown in Script 8.43.

Printed 23/9/20

24 Case study 8 ¢ Active databases

A more informative alerter is available in the scripts of the case study. It not only
reacts to the low level of a product but also to any replenishment operation.

create trigger TRG_STOCK ALERT
after update of QonHand on STOCK
for each row
when old.QonHand > new.Qresupply
and new.QonHand <= new.Qresupply
begin
select raise (IGNORE)
where sendMail ('ShostS', '$login$','pw',
l$fr0m$l '$t0$' 1
'html', '§subj§"',
'Quantity on hand of item #'
|old.ProdID
| '
has dropped from '

|

|

| |cast (0ld.QonHand as char) || ' to '

| | cast (new.QonHand as char)

| | '
on

| |datetime (current timestamp, 'localtime'),'')
= 'x'; end;

closeDB;

Script 8.43 - The SQLite version of the alerter [Alerter-by-mail-v1.sql]

8.10 Type-subtype implementation

This application shows how complex semantic structures, namely supertype-
subtype hierarchies, can be implemented through active database techniques.

8.10.1About database design

Designing a complex database generally starts with an important phase, conceptual
modeling, during which the application domain!? is analyzed. The result is called the
conceptual schema of the database. This schema identifies in the application domain
the categories - or types - of entities (customersand orders), their attributes (name of
customer, date of order) and their relationships (customers place orders). So, the
main components of a conceptual schema are the entity types, their attributes and
their relationship types.

10. Reminder: the application domain is that part of the real world we are interested in and about
which we intend to collect, memorize and exploit information. Also called the universe of
discourse.

Printed 23/9/20

25

This way of describing things!! is a trade off between two conflicting require-
ments: to produce a natural and intuitive description of the application domain (the
user view) and to easily translate it into database structures (the developer view).
Indeed, generating an SQL schema from a conceptual schema seems to be fairly
easy: each entity type is represented by a table, each attribute by a column, each
relationship type by a foreign key and, finally, each entity by a row.

8.10.2The Type-subtype concept

However, the real world we are interested in is not always that simple. It may
include many other important fact types that we would like to represent in the data-
base but that are much less straightforward to translate into SQL data structures.
Among them, the fact that an entity may belong to more than one type, which would
imply, in its SQL translation, that a row may belong to more than one table, which is,
at first glance, impossible.

For instance, it is generally agreed that professors and students are persons. So,
Stonebraker, who is a professor, will be classified as a member of type
PROFESSOR, and, as such, is an entity of type PERSON as well. In other words, the
set of PROFESSOR entities is a subset of the set of PERSON entities.

Obviously, the conceptual schema must report on these facts. It does so in this
way:
— We declare entity type PERSON with all its properties (attributes, relationship
types, constraints, and the like).

— Then, we declare entity type PROFESSOR a subtype of PERSON. PERSON is
therefore the supertype of PROFESSOR. All the properties of PERSON also are
those of PROFESSOR. This mechanism is called inheritance: attributes PersID
and Name are inherited attributes of PROFESSOR. In addition, entity type
PROFESSOR may have proper attributes, here Specialty.

— And of course the same for STUDENT.

Synthetically, one says that there is an is-a relation between (CUSTOMER,
SUPPLIER) and PERSON, an expression that tells that each professor is-a person.

These entity types and their is-a relations are illustrated in Figure 8.1.!2 Symbol D in
the triangle indicates that the subtypes are dijoint, that is, they cannot share
common entities.

Such patterns are at the basis of most programming languages but are generally
less frequent in relational databases for reasons we will discuss below.

11. In this example, we refer to the Entity-relationship model, the most popular database concep-
tual modeling language.

12. The graphical conventions are those of the GER, a general-purpose entity-relationship
language intended to represent database schemas according to various data models. This schema
has been drawn in the DBMain Case tool.

Printed 23/9/20

26 Case study 8 ¢ Active databases

PERSON
PersID
Name
id: PersID

A

PROFESSOR STUDENT]
Specialty Credits

Figure 8.1 - A conceptual schema showing an is-a relation

8.10.3Is-a relations in SQL3

Now, we can formulate the central question of this study: how can we translate is-a
relations into database structures? The answer depends on the level of the SQL stan-
dard the DBMS implements.

Besides standard table definition (as in Script 8.27 for example), SQL3 defines
the concept of table type, from which we can create any number of typed tables. In
the example below, we create type TPERSON, then two tables of this type. Each of
these tables comprises columns PersID and Name as they are defined in type
TPERSON:

create type TPERSON (PersID char (5),Name varchar (32));

create table PROFESSOR of TPERSON;
create table STUDENT of TPERSON;

insert into STUDENT wvalues('P345','Ullman') ;

An interesting property of table type organization is that a type can be declared a
subtype of another one, the latter being the supertype of the former. In the example
that follows, TTEACHER and TSTUDENT are declared subtypes of TPERSON
through clause under. This relation also exists between the tables we create from
these types: PROFESSOR and STUDENT are subtables of PERSON, which in turn is
their supertable.!3 Since TTEACHER inherits from TPERSON, columns PersID and
Name need not be declared in this subtype.

create type TPERSON (PersID char (5),Name varchar (32));
create type TTEACHER (Specialty varchar (24) under TPERSON;
create type TSTUDENT (Credits integer) under TPERSON

13. This example is simplified, the definitions of subtype structures being fairly complex. It is
merely intended to give the reader the taste of SQL subtypes, no more.

Printed 23/9/20

27

create table PERSON of TPERSON;
create table STUDENT of TSTUDENT under PERSON;
create table PROFESSOR of TTEACHER under PERSON;

insert into PERSON wvalues ('E0123','Smith');
insert into STUDENT wvalues ('S0234', 'Stonebraker',45);

By definition, table PERSON contains a set of PERSON rows. In addition, all the
rows of STUDENT and those of PROFESSOR also are rows of PERSON. So, the
following query is valid, though it will only return column PersID and Name of the
rows of the subtables:

select * from PERSON where Name = 'Stonebraker';

The SQL3 specifications discussed above are an attempt to offer database designers
an easy way to translate the is-a relations of conceptual schemas, and, on the other
hand, to bridge the database world with the object-oriented paradigm of most
programming languages.!4

8.10.41s-a relations in SQL2

The SQL3 specifications are both complex and limited.!5 In addition their imple-
mentations in major DBMS often are proprietary and therefore not compatible.!6

Some DBMS, including SQL.ite, even ignore table types. As a result, despite their
undoubted usefulness, these structures are not popular and are rarely used in
practice.

So, why not develop home-made subtable-supertable structures? In this way, we
can profit from their modeling advantages without suffering from their drawbacks.

Let us try to develop the PERSON/PROFESSOR/STUDENT example described
above with standard database structures. First, we must choose an appropriate
implementation of the data that underlie this structure. There are several simple
solutions. Among them, the following are the most popular:

1. Supertable representation: a single PERSON table gathers all the rows of the
three tables. Its schema is the following:

create table PERSON (PersID not null,Name not null,
Subtype, Specialty,Credit)

14. Purely object-oriented database systems have been developed in the 1980s. However, they
never met with the hoped-for success in the industrial world, and therefore gradually disappeared
in the 1990s.

15. Two examples: (1) two subtables of the same supertable are disjoint (a PROFESSOR row
may not be a STUDENT row) and (2) a type may not have more than one supertype (PostgreSQL
is an exception).

16. SQL standards are just recommendations.

Printed 23/9/20

28

Case study 8 ¢ Active databases

Nullable column Subtype indicates whether the row represents a professor, a
student or none of them.!” Subtables are reconstructed by selecting rows
based on column Subtype.

Subtable representation: three tables represents the partition of PERSON,
i.e., POPULATION_ONLY (people who are neither professor nor student),
PROFESSOR (people who are professor only) and STUDENT (people who are
student only). Supertable PERSON is reconstructed through a union operator.
This representation is not recommended to implement non disjoint subtables.

Table representation: the supertable is implemented by table PERSON as de-
fined in the structure. PersID is its primary key. Each subtable is represented
by a table comprising primary key PersID plus its proper columns. PersID is
also a foreign key that references PERSON. Subtables are reconstructed
through join operators.

Let us choose the last implementation, which will prove the most flexible. Script
8.44 creates the three base technical tables. Since they (hopefully) will never be
directly referenced by the users (neither by the programmers), we prefix their name
with an underscore symbol.

create table PERSON (

PersID char(5) not null primary key,
Name varchar (32) not null) ;

create table PROFESSOR (

PersID char(5) not null primary key
references PERSON
on update cascade
on delete cascade,

Specialty varchar(24) not null);

create table STUDENT (

PersID char(5) not null primary key
references PERSON
on update cascade
on delete cascade,

Credits integer not null) ;

Script 8.44 - Representing each supertable and subtable by a standard table

Then, we create three views, named PERSON, PROFESSOR and STUDENT, that will
be the only external interface for anyone interested in these data. We decide that
view PERSON provides all the available data of all its members, be they professor,
student or none of them. It is created by left outer joins. As to views PROFESSOR

17. Or both of them (non disjoint subtables), though this case may be more complex to under-
stand, to manage and to process.

Printed 23/9/20

29

and STUDENT, they show all the data respectively of professors and students. They
are created by inner joins.

create view PERSON (PersID,Name, Specialty,Credits)
as select P.PersID,Name, Specialty,Credits
from PERSON P
left join PROFESSOR F using (PersID)
left join STUDENT S using (PersID) ;

create view PROFESSOR (PersID,Name, Specialty)
as select P.PersID,Name, Specialty
from PERSON P, PROFESSOR F
where P.PersID = F.PersID;

create view STUDENT (PersID,Name,Credits)
as select P.PersID,Name,Credits
from _PERSON P, STUDENT S
where P.PersID = S.PersID;

Script 8.45 - Representing each supertable and subtable by a standard table

We populate these tables with a sample of initial rows (Script 8.46).

insert into PERSON values ('P0123','Smith');
insert into PERSON values ('P0234', 'Stonebraker') ;
insert into PROFESSOR values 'P0234"','DB Theory') ;

insert into STUDENT values ('P0345',45);

'P0456', 'Van Bolle') ;
'P0456"', 'Advanced SQL') ;
'P0456',30) ;

insert into _PERSON values
insert into PROFESSOR values

(
(
(
insert into PERSON values ('P0345','Ullman') ;
(
(
(
insert into _STUDENT values (

Script 8.46 - Introducing the data of four persons (in technical tables)

The content of the views (see below) shows an interesting variety of persons:
'P0123" is neither a professor nor a student, ' P0234 ' is a professor only, 'P0345"
is a student only and 'P0456 ' is both a professor and a student.

View PERSON
+-------- - mm - m - tmmmmmm - +--------- +
| PersID | Name | Specialty | Credits |
+-------- - mm- - m - - - - +--------- +
P0o123	Smith	--	--
P0234	Stonebraker	DB Theory	--
P0345	Ullman	--	45
Po456	Van Bolle	Advanced SQL	30
+-------- e tomm s mm - +----m - +

Printed 23/9/20

30 Case study 8 ¢ Active databases

View PROFESSOR

+-------- t--mmmm - m - - mm - mm - +
| PersID | Name | Specialty |
+-------- tommmm s m - Fommmmm s mm - +
| P0234 | Stonebraker | DB Theory |
| Po456 | Van Bolle | Advanced SQL |
+-------- e e o mm e m - +
View STUDENT
+-------- +--mmmmm - +--------- +
| PersID | Name | Credits |
+-------- Fmm - tommmm——-- +
| P0345 | Ullman | 45 |
| Po4ase | van Bolle | 30 |
+-------- t---mmm - === +

Querying data through these views is quite natural. However, we cannot say the
same for data creation. Indeed, we must insert data in the three technical table that
should remain hidden, a state of affair we cannot accept.

This is where active databases come in.

Our new objective is to allow data modification operations to be performed on
these views instead of on the technical tables. In other words, we must make these
views updatable. In most DBMS, modifying data through a view is very restricted
(or even forbidden, as in SQLite). In particular, the view cannot be defined by a
join.

Getting around this difficulty is simple: since the DBMS does not understand
what insert, delete and update queries mean, we will attach to each view a set
of triggers that explain how to execute these operations.

8.10.5The insert operations

We first state how we would like to proceed to insert data. Script 8.47 shows a first
correct approach. For a person who is neither a professor nor a student, the data are
inserted in view PERSON (e.g., 'P0123"). The data of a person who is either a
professor or a student (but not both) are inserted into views PROFESSOR or
STUDENT respectively (e.g., 'P0234' and 'P0334").

The last case is a bit more complex: the data of a person who is both a professor
and a student are inserted in both subtables (e.g., 'P0456'). So, tWo insert queries
for one person, a ratio which is far from natural!

insert into PERSON (PersID,Name) values ('P0123','Smith');
insert into PROFESSOR values ('P0234', 'Stonebraker', 'DB Theory') ;
insert into STUDENT values ('P0345','Ullman',45) ;

(
insert into PROFESSOR values ('P0456','Van Bolle', 'Advanced SQL') ;
insert into STUDENT values ('P0456','Van Bolle',b30) ;

Script 8.47 - Introducing of the data of four persons (in views) - Method 1

Printed 23/9/20

31

In the second approach (Script 8.48), all the data are inserted into supertable
PERSON. If the person is a professor, then column Specialty must have a value. If the
person is a student, column Credits must have a value. For a professor-student, both
columns must be valued.

insert into PERSON (PersID,Name) values ('P0123','Smith');

insert into PERSON (PersID,Name, Specialty)
values ('P0234','Stonebraker', 'DB Theory') ;

insert into PERSON (PersID,Name,Credits)
values ('P0345','Ullman',45);

insert into PERSON (PersID,Name, Specialty,Credits)
values ('P0456','Van Bolle', 'Advanced SQL',30) ;

Script 8.48 - Introducing of the data of four persons (in views) - Method 2

The insert triggers

The insert triggers coded in Script 8.49 are straightforward and allow for both
approaches.

When the data are inserted in view PERSON (as in Script 8.48), trigger
TRG_PER_INSERT fires. It first inserts a fragment in table _PERSON. Then, if
Specialty is not null, it inserts a fragment in table _PROFESSOR. Similarly, if Credits
is not null, it inserts a fragment in table _STUDENT. The subtype(s) indicator derives
from the presence of a value of a not null column of the subtable(s), namely, here,
Specialty for PROFESSOR and Credits for STUDENT).

When the data are inserted in view PROFESSOR (as in Script 8.47), trigger
TRG_PRO_INSERT fires. It inserts a fragment in table _PERSON if it didn't already
exist (if value new.PersID is not already present in this table). Then, it inserts the
remaining fragment in table _PROFESSOR. Trigger TRG_STU_INSERT (not shown)
behaves in the same way when data are inserted in view STUDENT.

8.10.6 The update operations

Update operations are more powerful than they use to be in standard databases.
Indeed, not only are they used to change the value of columns but they also allow us
to assign, remove or change the status of persons.

» Changing the value of proper attributes of an existing person
The name of professor 'P0123' changes

update PERSON
set Name = 'Branson'
where PersID = 'P0123';

Printed 23/9/20

32 Case study 8 ¢ Active databases

create trigger TRG_PER_INSERT
instead of insert on PERSON
for each row
begin
insert into PERSON
values (new.PersID,new.Name) ;

insert into PROFESSOR
select new.PersID,new.Specialty
where new.Specialty is not null;

insert into STUDENT
select new.PersID,new.Credits
where new.Credits is not null;
end;

create trigger TRG PRO INSERT
instead of insert on PROFESSOR
for each row
when new.Specialty is not null
begin
insert into PERSON
select new.PersID,new.Name
where new.PersID not in (select PersID from PERSON) ;

insert into PROFESSOR
values (new.PersID,new.Specialty) ;
end;

Script 8.49 - The triggers that control data insertions in the user views(trigger
TRG_STU_INSERT not shown)

* Changing the value of attributes of an existing professor
The speciality of professor 'P0234' changes
update PROFESSOR

set Specialty = 'DB Theory and Practice'
where PersID = 'P0234';

or

update PERSON
set Specialty = 'DB Theory and Practice!’
where PersID = 'P0234';

* Assigning a status to an existing person
Person 'P0123' becomes a professor

update PERSON
set Specialty = 'Business models'
where PersID = 'P0123';

Printed 23/9/20

33

* Removing a status of an existing person
Person 'P0234' is no longer a professor

update PERSON
set Specialty = null
where PersID = 'P0234';

or

delete from PROFESSOR
where PersID = 'P0234"';

The update triggers

The update triggers are shown in Script 8.50.

Trigger TRG_PER_UPDATE1 manages the modifications of the proper columns
of the supertable. For performance reasons, we have assigned a distinct update
query to each of these columns instead of one big query that updates all the
columns, whether their value has changed or not. If the primary key is updated, the
modification is automatically propagated to the foreign keys in _PROFESSOR and
_STUDENT thanks to their on update cascade clauses.

Trigger TRG_PER_UPDATEZ2 manages the modification of the proper columns of
view PROFESSOR imported into the supertable view (here, column Specialty). If
the new value of Specialty is not null, the effect of the operation depends on whether
the person concerned already is a professor or not. In the first case, column Specialty
is updated in the dependent _PROFESSOR row. In the second case, a new
_PROFESSOR row is created. Assigning a null value to Specialty means that this
person is no longer a professor. His _PROFESSOR row must therefore be deleted. A
similar trigger must be devoted to STUDENT updates.

Trigger TRG_PRO_UPDATE manages the modification of the proper columns of
view PROFESSOR. There are two cases. If the new value is not null, the column is
updated. If this value is null, the person loose his status and the corresponding
_PROFESSOR row is deleted.

Similar triggers are built to manage STUDENT updates.

Printed 23/9/20

34 Case study 8 ¢ Active databases

create trigger TRG_PER _UPDATE1
instead of update of PersID,Name on PERSON
for each row
begin
update PERSON
set PersID = new.PersID
where new.PersID <> old.PersID;

update PERSON

set Name = new.Name

where PersID = new.PersID

and new.Name <> old.Name;
end;

create trigger TRG PER UPDATE2
instead of update of Specialty on PERSON
for each row
begin
update PROFESSOR
set Specialty = new.Specialty
where PersID = new.PersID
and new.Specialty is not null;

insert into PROFESSOR
select new.PersID,new.Specialty

where new.PersID not in (select PersID from PROFESSOR) ;

delete from _PROFESSOR

where PersID = new.PersID

and new.Specialty is null;
end;

create trigger TRG_PRO_UPDATE
instead of update of Specialty on PROFESSOR
for each row
begin
update PROFESSOR
set Specialty = new.Specialty
where PersID = new.PersID
and new.Specialty is not null;

delete from PROFESSOR

where PersID = new.PersID

and new.Specialty is null;
end;

Script 8.50 - The triggers that control data update operations on the user views

Printed 23/9/20

35

8.10.7The delete operations
We can delete a person (with his status) or merely one of his statutes.

* Deleting a person
Person 'P0234' is deleted

delete from PERSON where PersID = 'P0345';

* Removing a status of an existing person
Person 'P0234' is no longer a professor

delete from PROFESSOR where PersID = 'P0234';

Delete triggers

The delete triggers are particularly straightforward (Script 8.51).

When a PERSON row is deleted, the dependent rows in the subtables are auto-
matically deleted, due to the on delete cascade clauses of the foreign keys.

create trigger TRG_PER_DELETE
instead of delete on PERSON
for each row
begin

delete from PERSON

where PersID = old.PersID;
end;

create trigger TRG_PRO_DELETE
instead of delete on PROFESSOR
for each row
begin
delete from PROFESSOR
where PersID = old.PersID;
end;

Script 8.51 - The triggers that control delete operations on the user views

8.10.8 Automating type-subtype manager production

Maintaining the consistency of a hierarchy of is-a relations requires a fairly large set
of triggers. However, if we examine carefully these triggers, we find that their struc-
ture is quite simple. Once we know:

— the schema of the technical tables (Script 8.44)
— the is-a relations, for instance stored in a temporary table ISA(Supert-
able,Subtable)

Printed 23/9/20

36 Case study 8 ¢ Active databases

writing them is straightforward. In other words, a simple script based on the SQLfast
dictionary (createDictionary) and the content of table ISA, can automatically
generate the complete set of triggers managing the is-a hierarchy.

Developing such a script is left to the reader's initiative.

8.11 Other applications

Before discussing and developing the prototype business application that closes this
study, we mention three more of the many applications of active databases.

Repair rules

Instead of rejecting insert and update queries that attempt to introduce erroneous
data in the database, these operations are accepted but the data they convey are sani-
tized or quarantined according to specific repair rules. Some examples:

— value clipping: if a value must be greater than or equal to v, but actually is
lower than this value, it is replaced by v

— dummy rows: attempting to insert a CUSTORDER row that references a
customer who doesn’t exist (yet) should be rejected. Instead, a dummy
CUSTOMER row is inserted with the CustID value comprised in the invalid row.
Later, this row will be completed with additional information on this customer.

— alternative reference: a CUSTORDER row to insert references a product that is
no longer available. This reference is automatically replaced by that of a
similar product.

In all these cases, it is recommended to report in a log table these anomalies and the
fixes that have been applied.

Access control

Most SQL implementations provide information about the execution context of
queries. This makes it possible to control whether a query can be executed or should
be rejected. Let us consider that only employee HR_008 is authorized to update table
SALARY, and only on business days from 9 a.m. to 12 a.m. This rule can be enforced
by the following trigger:

create trigger TRG_SALARY SECURITY

before update on SALARY

for each row

when not (current user = 'HR 008
and day_ of_ week (current_date) between 2 and 6
and hour of time(current time) between 9 and 12)

begin

raise('Illegal update of SALARY table');
end;

Printed 23/9/20

37

Temporal databases

A database is said temporal - or historical - when it stores the current and past states
of its content.!®* When rows are inserted, updated or deleted, the current state is
saved and a new one is added. Each state has a time interval associated with it, indi-
cating the period during which the report is/was valid. These data manipulations
may be complex but can be managed automatically by appropriate triggers.
Temporal databases are studied in detail in two case studies of this series, Temporal
databases - Part 1 and Part 2.

8.12 Building a business application

This application is of a nature different from those we have developed so far. While
the latter provide some sort of ancillary services for the benefit of higher level appli-
cation, this one is an active database that implements a full scale business applica-
tion (except the graphical user interface of course).

8.12.1About the case

We choose a business application that is sufficiently simple to be described in less
than half a page, but sufficiently rich to require the implementation of some non-
trivial rules.

This application is to support some basic business processes of a small retail shop
that sells building materials to private customers. We identify three actors in this
scenario: the customer, the retail shop employee and the supplier(s).

The responsibilities of the customer are simple: placing orders and executing
payments.

An employee of the shop receives orders from customers and encodes them in the
computer. A customer order specifies a quantity of a definite item. If this item is
physically available in this quantity, the order is executed, an invoice is printed and
sent, and the customer is invited to take away the materials ordered. When the
payment of the invoice is received, the order is said to be closed. If there is not
enough of this item in the inventory, the order is suspended, the employee writes a
purchase order and sends it to the supplier which proposes the best offer for this
item: i.e., the lowest price, and in case of tie, the shortest delivery time.

From time to time, each supplier examines the purchase orders it has received for
a definite item and decides to execute them. On the retail shop side, this replenish-
ment allows pending orders to be executed and invoices to be sent.

From time to time too, customers pay their invoices, which closes their orders.

18. Actually, true temporal database also record future states.

Printed 23/9/20

38 Case study 8 ¢ Active databases

Since we concentrate our discussion on the retail shop management, we assume
that the inventories of suppliers are infinite so that their items never become out of
stock. We also consider that the items as viewed by the retail shop also are those
viewed by the suppliers.

8.12.2About the case study

We intend to develop this application according to two different paradigms that can
be abstractly described as 3-tier and 2-tier architectures.!?

In a standard 3-tier architecture, the application is distributed in three compo-
nents, that usually reside on three distinct hardware/software platforms: the
database, the business logic and the presentation (or client). See Figure 8.2, left.

The database comprises all the persistent data required to allow the business to
work. The business logic is made up of the application program(s) that collect,
check, transform, process, compute, store, retrieve the data exchanged with the
clients and with the database. The presentation component is in charge of managing
the user dialogues through a GUI, either proprietary (such as through a specific app
in a smartphone) or generic (such as a web browser).

Theoretically, the database platform, generally called the database server,
requires a specific hardware architecture comprising large, fast external data stores.
The application programs will generally reside on a CPU intensive application
server, with many-core processors and large RAM, while the presentation compo-
nent will run on a mobile device or on a standard PC. The communication channels
between the components are expected to be as fast as possible. Actually, one must
distinguish the logical architecture (the three components) from the physical one
(the platforms). A 3-tier architecture can be distributed on three platforms, as
described above, but also on a single machine, in which case the communications
are particularly fast. At the opposite, the database can be distributed and replicated
among several machines, to improve the availability and security of the data.

In a 2-tier architecture, two of these components are merged. For instance, the
database component and the application programs are integrated. This integration
can be understood in two ways. First, the application programs absorb the database
component; it accesses the data directly, without the intermediary of a database
server. Programs accessing SQLite databases are of this kind.29 The second interpre-
tation is much more interesting: the application programs are absorbed by the
database, which becomes an active database. This variant of application only
comprises the presentation and database components (Figure 8.2, right).

This is the architecture we will explore in this case study. We first study, in an
informal and intuitive way, the sequence of actions that must be performed when-
ever customer orders are encoded in the database, customers execute their payments

19. https://en.wikipedia.org/wiki/Multitier architecture
20. The SQLite DBMS, that is a function library, is said serverless.

Printed 23/9/20

39

and suppliers replenish out of stock items, irrespective of the technique that could
be applied to implement these actions.

y 2]

Client
workstation

Client
workstation

Business Application
Logic server

Database
server

usmes
logic

Database
server [tab

dﬁ

Figure 8.2 - Symbolic representation of 3-tier (left) and 2-tier (right) architecture

8.13 The static structure of the database

The short description developed above suggests that the application domain (the part
of the world we are interested in) comprises seven kinds of core entities: the
customers, the items, the suppliers, the offers(the items the suppliers propose to sell,
with their price and delivery time), the customer orders, the customer invoices and
the supplier orders.

The first four categories are basic entities, that define the intrinsic static structure
of the shop. These entities evolve slowly. For example, the life span of a customer is
measured in years. Although new items may appear at any time, we do not expect
more than 10% of them to be introduced in the inventory each year.

The last three entity categories are transactional entities that describe the opera-
tions that take place in the application domain. They evolve rapidly, most of them
living only two or three days.

Printed 23/9/20

40 Case study 8 ¢ Active databases

To record data about these entities, the database comprises four base tables and
three transaction tables.

8.13.1The base tables

The base tables describe stable entities: the customers (CUSTOMER), the items sold
by the retail shop (ITEM), the suppliers (SUPPLIER) and the offers (table OFFER).

Table CUSTOMER
Table CUSTOMER stores identification and contact data of customers (columns
CustID, Name, Address and City) plus the current balance of each customer
account (column Account). Once an invoice has been sent, this value is decreased
by the amount of this invoice. The balance is negative if some invoices still are to
be paid.?!

create table CUSTOMER

(
CustID char(10) not null,
Name char (32) not null,
Address char(60) not null,
City char (30) not null,

Account decimal (9,2) not null,
primary key (CustID)) ;

Table ITEM
The rows of table ITEM describe the items of the retail shop that the customers
may buy.

create table ITEM (

ItemID char (15) not null,
Description char(60) not null,
Price decimal (4,2) not null,
SuppID char (10),

SuppPrice decimal (4,2),

QonHand integer not null,
Qord integer default 0,
Qavail integer not null,
Qeco integer not null,

constraint PKITEM primary key (ItemID)) ;

In addition to its Id (column ItemID) and description (column Description), each
item is characterized by the following properties.

21. In this small case study, we do not consider purchase reimbursement. Therefore, the balance
will never be positive.

Printed 23/9/20

41

— Price: the current customer unit price of the item.

— SupplID: 1Id of the reference supplier of the item. The reference supplier is
selected as the one that provides the best offer for the item (lower price and
lower shipment time). This choice is re-evaluated each time the item is replen-
ished.

— SuppPrice: the unit price requested by the reference supplier to replenish the
inventory.

— QonHand: the quantity on hand is the quantity that physically exists in the
inventory of the retail shop. If a customer order requests a quantity qty not
greater than QonHand, it is immediately executed. Otherwise, the order is
pending, waiting for the replenishment the reference supplier will execute. In
both cases, QonHand is decreased by qty. This means that QonHand may be
negative.

— Qord: the quantity on order is the total quantity that has been ordered to the
reference supplier but not shipped yet. When a customer order, the quantity gty
of which cannot be satisfied by the quantity on hand (qty > QonHand) nor by
the future replenishment (qty > Qavail), then an order is issued for a certain
quantity mQeco (explained below) and sent to the reference supplier. Qord is
then augmented by mQeco.

— Qavail: the available quantity is the sum of QonHand and Qord. This is the
quantity that can be consumed to execute future customer orders without the
need to place a new replenishment order with the reference vendor. If a
customer order requests more than the quantity on hand but no more than the
available quantity (QonHand < Qty < Qavail), it will be executed as soon as the
pending supplier orders are executed.

— Qeco: this is a simplified variant of the economic order quantity, that is, the
optimal quantity?? to be ordered from the reference supplier to replenish the
item inventory. Actually, the quantity mQeco requested from the supplier is a
multiple of Qeco computed as follows:

mQeco = m x Qeco, m being the smallest integer such that
Qavail + mQeco > 0.

Table SUPPLIER
Table SUPPLIER describes the suppliers of the retail shop. It plays no role and is
mainly symbolic.

22. In real inventory management, this quantity is computed so that the total cost of replenish-
ment is minimal. See https://en.wikipedia.org/wiki/Economic_order_quantity for more detail.

Printed 23/9/20

42 Case study 8 ¢ Active databases

create table SUPPLIER (
SuppID char(10) not null,
Name char (32) not null,
City char (30) not null,
primary key (SupplD)) ;

Table OFFER
Table OFFER describes, for each supplier (SupplD) and for each item this supplier
can supply (ItemID) its unit price (Price) and its delivery time in days (Delay).

create table OFFER (
SuppID char(10) not null,
ItemID char(1l5) not null,
Price decimal (4,2) not null,
Delay integer not null,
primary key (SuppID,ItemID),
foreign key (SuppID) references SUPPLIER,
foreign key (ItemID) references ITEM) ;

8.13.2The transaction tables

The transaction tables describe the documents processed by the employees of the
retail shop: the customer orders (CUSTORDER), the invoices sent to the customers
(CUSTINVOICE) and the orders sent to the suppliers (SUPPORDER).

The entity states

Before translating these entities into database structures, we examine the timeline of
the life of transactional entities, from their initial recording to their closure. Their
lives comprise a sequence of states.

The first state of a customer order is 'recorded'. If the item requested is available
in sufficient quantity (Qty < QonHand), an invoice is created and the state of the
order is 'invoiced'. When the customer has made the corresponding payment, the
order is in the 'closed’ state. However, if there is no sufficient quantity (Qty >
QonHand), the order is in the 'pending' state, followed, later by ‘invoiced' and
‘closed' states.

The first state of a customer invoice is 'recorded’. Then, if the order is in
'invoiced' state, the invoice is set in 'sent’ state. If the order is in 'pending' state, the
state of the invoice also is '‘pending’. When the customer has made the payment, the
invoice is in the 'paid’ state.

The sequence of states of a supplier order is simpler: 'recorded’, 'assigned’ when
the supplier with the best offer has been identified, and 'closed’ when the order has
been executed.

Printed 23/9/20

43

customer order: recorded \ />invoiced—>closed
pending
customer invoice: recorded \ />sent »paid
pending

supplier order: recorded—»assigned——»closed

Figure 8.3 - Diagram of state transitions of transactional entities

Table CUSTORDER
Table CUSTORDER contains the data of the customer orders received so far. In
addition to the Id (column OrdID) and date received (column DateOrd) of each
order, its row specifies:

— CustID: the reference of the customer who placed the order.
— ItemID: the reference of the item ordered.

— Price: the unit price of the item at the time the order has been registered. This
column is nullable; it will be updated after the row has been inserted.

— Qty: the quantity requested of the item.

— State: the current state of the order, among the following: 'recorded’, 'invoiced’,
‘closed’, 'pending'.

create table CUSTORDER (
OrdID integer not null,
DateOrd date not null,
CustID char(10) not null,
ItemID char(15) not null,
Price decimal (4,2),
Qty integer not null,
State char (20) not null,
primary key (OrdID),
foreign key (CustID) references CUSTOMER,
foreign key (ItemID) references ITEM) ;

Table CUSTINVOICE

Table CUSTINVOICE contains the data of the invoices generated for each
customer order as soon as the latter has been processed. Since each invoice is
attached to an order, it shares most of its data with the latter.

Printed 23/9/20

44 Case study 8 ¢ Active databases

These data include the Id of the invoice (column InvID), the date it has been
generated (column Datelnv). In addition, they comprise, for each invoice:

— OrdID: the reference of the customer order with which it is associated.

— CustID: the reference of the customer who placed the order (and to whom the
invoice will be [or has been] sent)

— ItemID: the reference of the item ordered.
— Price: the unit price of the item (same as in the CUSTORDER row).
— Qty: the quantity requested of the item.

— State: the current state of the invoice, among the following: 'recorded’, 'sent’,
'‘paid’, 'pending'.

create table CUSTINVOICE (
InvID integer not null,
DateInv date not null,
OrdID integer not null,
CustID char(10) not null,
ItemID char(15) not null,
Price decimal (4,2) not null,
Qty integer not null,
Amount integer not null,
State char (20) not null,
primary key (InvID),
foreign key (0OrdID) references CUSTORDER) ;

Table SUPPORDER

Each row of table SUPPORDER describes an order issued by the retail shop to
replenish an item that is out of stock. This order is sent to the reference supplier
of this item. A supplier order is sent for each customer order that cannot be
executed due to insufficient quantity available (Qavail).

In addition to the Id (column OrdID) and date sent (column DateOrd) of each
order, its row specify:

— CustlID: the reference of the customer who placed the order.
— ItemID: the reference of the item ordered.

— SupplD, Price: the supplier Id and the unit price of the item as specified by the
best offer.

— Qty: the quantity requested of the item.
— State: the current state of the order, among the following: 'assigned’, ‘closed'.

Printed 23/9/20

45

create table SUPPORDER (
OrdID integer not null,
DateOrd date not null,
ItemID char(15) not null,
SuppID char(10) not null,
Price decimal (4,2) not null,
oty integer not null,
State varchar (20) not null,
primary key (OrdID),
foreign key (SuppID,ItemID) references OFFER) ;

Script 8.52 - Schema of the last of the seven tables of the database

8.13.3The initial state of the database

New, we will observe how the data evolve when we execute a series of representa-
tive transactions according to the scenario described in the next sections. To make
things concrete, we consider that the base tables contain the initial data shown in
Appendix A. The subset of these data that will actually be used by the transactions

are depicted in Figure 8.4.
CUSTOMER CustID Name Address City Account
C400 NEUMANN 454, KirchenstrafRe Berlin 0

K111 JANSEN 5B, Grote Halstraat Amsterdam 0

[TEM TtemiD ... Frice SuppID SuppPrice Qonfand Qord Qavail Qeco
PA45 48 -- -- 80 0 80 80
S L IER SuppID Name . At .
f;&25 BricoMat Paris

Figure 8.4 - Initial state of OFFER table (limited to item PA45)

Printed 23/9/20

46 Case study 8 ¢ Active databases

8.13.4The transactions

We first introduce and process some customer orders. Then, we will let the supplier
ship the items requested by the retail shop. Finally, the customers will pay the
invoices they have been sent.

A first customer order

This first customer order is placed by German customer C400 (NEUMANN). It
requests 60 units of item PA45 (Steel nails of 45 mm). This order is encoded as row 1
in table CUSTORDER (Figure 8.5).

CUSTORDER OrdID DateOrd CustID ItemID Price Qty State

1 2020-03-27 C400 PA45 48 60 1invoiced
Figure 8.5 - Customer C400 has ordered 60 units of item PA45

The customer price (48) of the item has been inserted into this row. Since the quan-
tity on hand of this item is 80 (Figure 8.4), this order can be executed immediately.
Therefore:

— an invoice has been created in the database (Figure 8.6),

— this invoice has been printed and sent (Figure 8.7); so, its state is set to 'sent'
(Figure 8.6),

— as a natural consequence, the state of the order is set to 'invoiced' (Figure 8.5),

CUSTINVOICE InvID DateInv OrdID CustID ItemID Price Qty Amount State

1 2020-03-27 1 C400 PA45 48 60 2880 sent

Figure 8.6 - The invoice as it has been created in the database

INVOICE no 1

CUSTOMER: C400
Date: 2020-03-27
Item: PA45
Qty: 60
Price: 48

Figure 8.7 - The invoice has been printed (simplified layout) and sent to the customer

In table ITEM, the row describing item PA45 has been updated: the quantity of the
order (Qty = 60) is subtracted from the quantity on hand of the item (80 - 60 = 20),
and from its quantity available (Figure 8.8).

Printed 23/9/20

47

ITEM ItemID ... Price SuppID SuppPrice QonHand Qord Qavail Qeco

Figure 8.8 - The new state of table ITEM

Finally, we have to notify that the customer's account is decreased by the amount of
the invoice, i.e., 2,880 (Figure 8.9).

CUSTOMER CustID Name Address City Account

C400 NEUMANN 454, KirchenstrafRe Berlin -2880

Figure 8.9 - Since the order has been executed and the invoice has been sent, the
account level of the customer is updated

Another customer order

We decide to process a second order, from customer K111 (JANSEN), that also spec-
ifies item PA45 of which it requests 35 units. Since there are only 20 units left of
PA45, this order cannot be executed. It is created with a pending state. An invoice is
also created with the same pending state (Figure 8.10).

CUSTORDER OrdID DateOrd CustID ItemID Price Qty State
1 2020-03-27 C400 PA45 48 60 invoiced
2 2020-03-27 K111 PA45 48 35 pending
CUSTINVOICE InvID DatelInv OrdID CustID ItemID Price Qty Amount State
1 2020-03-21 1 C400 PA45 48 60 2880 sent
2 2020-03-27 2 K111 PA45 48 35 1680 pending

Figure 8.10 - Customer order n° 2 cannot be executed and is left pending as well as
its associated invoice

The quantity on hand of item PA45 becomes negative (20 - 35 = -15), as well as its
quantity available, so, we decide to replenish the stock of item PA45 by sending an
order to a supplier. The quantity requested (Qord) is the economic order quantity of
this item (Qeco = 80), which will be sufficient to replenish the stock. The question is,
which supplier will be chosen? First, of course, the suppliers offering the lowest
price are selected. There are two contenders, namely D-109 and F-725, both with a
price of 35 (Figure 8.4). From them, we choose the offer that guarantees the shortest
delivery time, F-725, to which the order is assigned. This best offer is translated into

Printed 23/9/20

48 Case study 8 ¢ Active databases

the data of Figure 8.11. A supplier order is created. Its components are shown in
Figure 8.12.

ITEM ItemID ... Price SuppID SuppPrice QonHand Qord Qavail Qeco

Figure 8.11 - 80 units of P45 have been ordered according to the best offer.

SUPPORDER OrdID DateOrd ItemID SuppID Price Qty State

1 2020-03-27 PA45 F-725 35 80 assigned

Figure 8.12 - The supplier order has been assigned to supplier F-725

About next customer orders

If the next customer order specifies a quantity qty of PA45 not greater than 65 units,
it could be executed once the supplier order is executed (theoretically the next
working day according to the data of Figure 8.4). In this case, there is no need to
issue another supplier order. On the contrary, if this quantity is greater than 65 a new
supplier order of 80 units, so that Qord is increased to 160.

On the supplier side

Now, let us go and see what happens on the supplier side once the first supplier order
has been received (that depicted in Figure 8.12). This order asks supplier F-725 to
replenish item PA45. When this request is satisfied, 80 units of this item are sent to
the retail shop to replenish the PA45 stock.

The ITEM row is changed as follows (Figure 8.13):
— the quantity on hand is now QonHand = -15 + 80 = 65 units
— the quantity ordered is reset to 0

— the available quantity does not change (65).

ITEM ItemID ... Price SuppID SuppPrice QonHand Qord Qavail Qeco

Figure 8.13 - ltem PA45 has been replenished

Printed 23/9/20

49

The supplier order has been successfully processed and can be closed (Figure 8.14).

SUPPORDER OrdID DateOrd ItemID SuppID Price Qty State

1 2020-03-27 PA45 F-725 35 80 closed

Figure 8.14 - The supplier order is closed

Item PA45 has been replenished, what next?

Now, we go back to the retail shop, where the second customer order can be
executed, with the following consequences (Figure 8.15):

— its pending invoice is sent to the customer,
— the customer order is declared invoiced ,

— the Account value of customer K111 is changed to -1680.

CUSTINVOICE InvID DateInv OrdID CustID ItemID Price Qty Amount State
1 2020-03-27 1 C400 PA45 48 60 2880 sent
2 2020-03-27 2 K111 PA45 48 35 1680 sent
CUSTORDER OrdID DateOrd CustID ItemID Price Qty State
1 2020-03-27 C400 PA45 48 60 invoiced
2 2020-03-27 K111 PA45 48 35 invoiced
CUSTOMER CustID Name Address City Account
C400 NEUMANN 454, Kirchenstrafle Berlin -2880

K111 JANSEN 5B, Grote Halstraat Amsterdam -1680

Figure 8.15 - Processing pending customer orders and invoices after item
replenishment

Finally, customer C400 pays his invoice

The last operation to consider is the responsibility of the customer: paying for the
materials she has been delivered. Let us examine the case of customer C400, who
ordered, and took away, 60 units of item PA45, and for which he has to pay an
amount of 2,880. When this payment has been executed, the employee of the retail
shop encodes it in the computer. This operation triggers three data modifications
(Figure 8.16):

— the invoice state is set to 'paid’

— the customer order is closed

Printed 23/9/20

50 Case study 8 ¢ Active databases

— and the account level of the customer is increased (becomes less negative) by
the amount of the payment.

CUSTINVOICE InvID DateInv OrdID CustID ItemID Price Qty Amount State
1 2020-03-27 1 C400 PA45 48 60 2880 paid
2 2020-03-27 2 K111 PA45 48 35 1680 sent
CUSTORDER OrdID DateOrd CustID ItemID Price Qty State
1 2020-03-27 C400 PA45 48 60 closed
2 2020-03-27 K111 PA45 48 35 invoiced
CUSTOMER CustID Name Address City Account

C400 NEUMANN 454, KirchenstrafRe Berlin 0

Figure 8.16 - Registering the payment of the first invoice

This scenario is great for intuitively understanding the principles of the mechanisms
we will have to implement. However, to translate them into code, we would need a
more precise definition of the operations. In order not to make this presentation too
cluttered, we have moved these definitions to Appendix B.

8.14 Implementation of the classical application
architecture

We can ignore the standard ancillary functions for registering, modifying and
deleting data of basic tables (CUSTOMER, ITEM, SUPPLIER and OFFER). On the
one hand, they do not depend on the application architecture and, on the other hand,
their code is quite simple. So, we can concentrate the discussion on the components
and algorithms of the standard 3-tier architecture.

The GUI comprises three modules that collect the data required to register a
customer order, a customer payment and the execution of supplier orders to
replenish the item stock of the retail shop. These modules are implemented by three
SQLfast scripts (Figure 8.17):

— Register-CUSTORDER-GUI.sql (Script 8.53 and Figure 8.18),

— Register-PAYMENT-GUI.sql,
— Replenish-ITEM-GUI.sql.

Printed 23/9/20

51

Register-CUSTORDER-GUI.sql
Register-PAYMENT-GUL.sql GUI scripts
Replenish-ITEM-GUI.sql

Register-CUSTORDER-Code.sql Application
Register-PAYMENT-Code.sql scripts
Replenish-ITEM-Code.sq|

SQLfast Database
SQLite 3

server

Figure 8.17 - The standard implementation of the 3-tier architecture

extract oid = select coalesce (max (OrdID),0)+1 from CUSTORDER;
set dat = SdatesS;

ask-u oid,dat,cus,itm,gqty = [/bRegister a new customer order]
Order ID:

| Current date:
| Customer ID: [select Name||' ('||CustID||')', CustID
from CUSTOMER order by CustID]
| Item ID: [select Description||' ('||ItemID||')',ItemID
from ITEM order by ItemID]
|Quantity: ;
execSQL Register-CUSTORDER-Code.sql;

Script 8.53 - Dialogue box to register a new customer order (simplified version)

The first script computes the next order Id (or 0 for the very first order), extracts the
current date, execute the dialogue box, then call application script RETAIL-Register-
CUSTORDER-Code.sql that implements in a straightforward way the business logic
developed in Section 8.24.2 of Appendix B. Considering the emphasis of this docu-
ment on active database implementation, the code of Register-CUSTORDER-

Printed 23/9/20

52 Case study 8 ¢ Active databases

Code.sq| is not shown here but can be examined in directory SQLfast\Scripts\Case-
Studies\Case_Active_DB\Standard-Version.

The other GUI modules and application scripts are coded in a similar way.

=5

Reqgister a new customer order
Order ID: 1

Current date: 2020-03-27

Customer ID: INEUMANN (C400) |

Item ID: |NAILS STEEL 45 (5K) (PA45) 7|
Quantity: o0

Ok Cancel

Figure 8.18 - Collecting the data to register a new customer order

8.15 Implementation as an active database

The basic philosophy of the standard architecture is to decompose a complex task
into simpler tasks, that typically translates into a hierarchy of procedures in which
parent procedures call their children procedures for execution.

The principle of active databases is quite different. It consists in creating events
that send some kind of messages to target objects materialized as rows in the
tables.2? For example, when the payment of an invoice has been received, a message
is sent to this invoice by changing its state from 'sent' to 'paid’. As soon as the
invoice receives this message (by catching the State update event), it closes its order
and updates the account of its customer. In other words, each object is responsible
for the consequences of its evolution.

The architecture specific to our case study is shown in Figure 8.19. The GUI
comprises three scripts quite similar to those of the standard architecture. The only
difference is that, instead of calling complex application scripts, they just send
messages to database objects by executing elementary data modification queries.

8.16 Extending the data structures

The main components of our active database are the triggers that are responsible
for applying the rules of the business logic elaborated in Appendix B.?* Our discus-

23. Somewhat similar to object-oriented and agent-based approaches.

Printed 23/9/20

53

sion will of course focus on their development. However, there is some
opportunities to alleviate their work by automating some checking and computing
operations through default, check and generated clauses. Some of them are
shown in Script 8.54.

Register-CUSTORDER-GUl.sql
Register-PAYMENT-GUI.sql GUI scripts
Replenish-ITEM-GUI.sq|

SQLfast Database
SQLite 3 server

B_usines_é
logic

atabas

Figure 8.19 - The 2-tier architecture implementation as an active database

8.17 The user interface

The three transaction operations, namely registering a customer order, registering
the payment of a customer invoice and replenishing the stock of an itemby a supplier
are carried out through the same dialogue boxes that collect data from the user.
Then, they use them to update the database:

— Registering a customer order: a new row is inserted in CUSTORDER table from
the data collected from the user (Script 8.55).

— Registering a payment: the user provides the Id of an invoice, the state of which
is set to 'paid' (Script 8.56).

— Replenishing the stock of an item: the user identify all the assigned (that is, not
closed yet) supplier orders of an item to a supplier. The state of this order is set
to 'closed' to indicate that the quantity ordered has been shipped (Script 8.57).

24. Sored procedures can also be used to encapsulate some critical rules. However, since the
DBMS on which our case study will be built does not offer these constructs, they will be ignored.

Printed 23/9/20

54 Case study 8 ¢ Active databases

create table CUSTOMER (
Account decimal (9,2) not null default 0.0,
o) 8
create table ITEM (
Qavail integer not null
generated always as (QonHand+Qord),

o)) B
create table CUSTORDER (

State char (20) not null default 'recorded',

check (Qty > 0)) ;
create table CUSTINVOICE (
Amount integer not null
generated always as (Qty*Price),
State char (20) not null default 'recorded',
) 8
create table SUPPORDER (

-7

State varchar (20) not null default 'recorded',

o) B

Script 8.54 - Augmenting table structures with default, check and generated clauses

ask-u oid,dat,cus,itm, gty = <see Script 8.53>;

insert into CUSTORDER (OrdID,DateOrd,CustID,ItemID, Qty)
values (oid, '$dats', 'Scus$', '$itms', Sqtys) ;

commitDB;

Script 8.55 - Dialogue box to register a new customer order (simplified version)

ask inv = [/bRegister a payment]
Invoice: [select InvID||': '||CustID||', '||DateInv,InvID
from CUSTINVOICE
where State = 'sent' order by InvID];

update CUSTINVOICE
set State = 'paid'
where InvID = $invs;

commitDB;

Script 8.56 - Dialogue box to register the payment of an invoice (simplified version)

Printed 23/9/20

55

ask itm = [/bSelect an item to replenish]
Item: [select distinct ItemID from SUPPORDER
where State = 'assigned' order by ItemID];
ask sup = [/bSelect a supplier of "Sitm$"]
Supplier: [select distinct SU.SuppID||' ('||SU.Name
[]")" ,SU.SuppID

from SUPPORDER SO, SUPPLIER SU
where SO.SuppID = SU.SuppID
and ItemID = 'Sitms'

and State = 'assigned'

order by SU.SuppID];

update SUPPORDER

set State = 'closed!'

where SuppID = 'Ssup$' and ItemID = 'S$Sitm$'
and State = 'assigned';

commitDB;

Script 8.57 - Dialogue box to execute supplier orders (simplified version)

The actions of the user interface merely consist in sending messages to objects (i.e.,
table rows). They are symbolized in Figure 8.20.

insert

Register-CUSTORDER-GUI » CUSTORDER

State = ‘paid’
Register-PAYMENT-GUI » CUSTINVOICE

State = ‘closed’
Replenish-ITEM-GUI » SUPPORDER

Figure 8.20 - The GUI scripts send messages through data modification events

Now, the real work is performed by triggers that react to these messages by carrying
out the data processing operations implementing the business tasks.

8.18 The transactions

Now we examine how the logic of the three main transactions are translated into a
trigger system.

Printed 23/9/20

56 Case study 8 ¢ Active databases

8.18.1Registering a customer order

When a CUSTORDER row has been inserted in the database, the first question is,
does the stock contain enough of the item to execute this order (Case 1 in Appendix
B, Section 8.24.2), or not (Case 2 in the same section)?

We find it clearer to create a trigger for each branch of this alternative (Script
8.58).

create trigger TRG CORD_ INS1

after insert on CUSTORDER

when new.Qty <= (select QonHand from ITEM
where ItemID = new.ItemID)

begin ... end;

create trigger TRG CORD_INS2

after insert on CUSTORDER

when new.Qty > (select QonHand from ITEM
where ItemID = new.ItemID)

begin ... end;

Script 8.58 - Controlling CUSTORDER insert operations - First attempt

Beware of side effects!

As a general rule, the conditions of the when clauses of these triggers (let us call
them c1 and ¢2) must be exclusive and covering:

— exclusive: ¢1 and ¢2 = False

— covering: ¢1 or ¢2 = True

In other words, when a new CUSTORDER row is inserted, one and only one of these
triggers will fire. Unfortunately, as they are expressed in Script 8.58, these triggers
may not always execute as expected. The analysis of Section 8.24.2 shows that, in
Case 1 and Case 2, the value of QonHand of the referenced ITEM row is decreased
by that of Qty of the order. Indeed, we read, in both cases:

» update referenced ITEM row it:
subtract co.Qty from it. QonHand

Let us consider that an insert occurs when condition Qty < QonHand is met. The
database engine selects and fires one of the after insert triggers that meet this
condition, that is, TRG_CORD_INS1. During the execution of its body, this trigger
decreased the value of QonHand of the referenced ITEM row. When this execution is
finished, the database engine examines one of the other after insert triggers,
i.e., TRG_CORD_INS2, and evaluates its condition.

This is where the aforementioned problem may arise: if, initially, Qty < QonHand
< 2*Qty, then the first trigger assigns to QonHand a new value such that QonHand <

Printed 23/9/20

57

Qty, which means that the when condition of the second trigger is also met. There-
fore, both triggers will fire!

The pattern of the problem is easy to identify: the body of TRG_CORD_INS1
modifies the values used in the when clause of TRG_CORD_INS2, in such a way that
conditions ¢1 and ¢2 no longer satisfy the exclusive condition.

This problem can be solved in two ways. First we can encapsulate all the different
cases in a single (large and complex) trigger. Secondly, we refine the when condi-
tions in such a way that they remain exclusive, whichever the order in which they
are executed. Let us choose the last solution.

We examine the operations of Case 1 and Case 2 and we observe that both create
an invoice. So we modify the when condition as follows: each trigger will fire if the
when condition of Script 8.58 is met and no invoice has been created yet. This
means that, whatever the order in which the triggers are considered for execution by
the SQL engine, only the first one will fire.

Now, the triggers of Script 8.59 work as expected.

Important remark

The behavior of the trigger system of a database depends on the execution model
implemented by the DBMS. Theoretically, when an event occurs, the SQL engine
identifies all the candidate triggers that this event may fire. From them, only
those that satisfy the when condition will actually fire. This leads to two ques-
tions: in which order will these triggers fire and when will their when condition
be evaluated?

Most DBMS allow the database designer to specify this order, in a deterministic
way, through various means. Some others, SQLite being one of them, leave the
order undefined so that the designer must resort to some adhoc trick to force a
definite execution order. This is what we have done by checking the absence of a
dependent CUSTINVOICE row.

The question of the when condition is more delicate. According to a first model,
all the conditions of the candidate triggers are evaluated before any of them fires.
In this model, there is no side effect and the exclusive property of conditions
Case 1 and Case 2 is guaranteed by construction. In another model, the condition
of the first candidate trigger is evaluated, and if True, its body is executed. After
that, the SQL engine consider another trigger, evaluates its condition, and, if
True, executes its body. This process goes on until all the candidate triggers have
been examined. So, the value of the condition of a trigger depends on the execu-
tion of the triggers executed before it, which leads to the undesirable side effect
described in this section. The execution model of SQLite is of this kind.

Printed 23/9/20

58

Case study 8 ¢ Active databases

create trigger TRG_CORD_ INS1
after insert on CUSTORDER
when new.Qty <= (select QonHand from ITEM

and

where ItemID = new.ItemID)
not exists (select * from CUSTINVOICE
where OrdID = new.OrdID)

begin ... end;

create trigger TRG_CORD_ INS2
after insert on CUSTORDER
when new.Qty > (select QonHand from ITEM

and

where ItemID = new.ItemID)
not exists (select * from CUSTINVOICE
where OrdID = new.OrdID)

begin ... end;

Script 8.59 - Controlling CUSTORDER insert operations - Final version

Local variables

Triggers of CUSTORDER tables will use four local variables. They are simulated by
technical table V_CORDER:

create table V_CORDER (Price,Qavail,mQeco, InvID) ;

Controlling CUSTORDER row in Case 1

Script 8.60 shows the code of TRG_CUSTORDER_INS1, the trigger responsible for
the propagation of data modification due to the insertion of a new CUSTORDER
according to Case 1., that is, when the quantity on hand is sufficient to immediately
execute the order. It uses two local variables: Price, the customer unit price of the
item, and InvID, the Id of the next invoice. It comprises five queries:

1.

The first query (insert) stores in V_CORDER the current values of the local
variables.

The next query (update) subtract the quantity ordered from the quantity on
hand.

Then, the CUSTORDER row just inserted is completed (update) with the unit
price of the item.

The fourth query creates the invoice (insert) and initializes its state to 'send'.
This latter setting is a message that instructs the target row to execute a series
of actions deriving from its new state. These actions are specified in Script
8.64.

Finally, the local variables are reset.

Printed 23/9/20

59

create trigger TRG CUSTORDER INS1
after insert on CUSTORDER
for each row
when new.Qty <= (select QonHand from ITEM
where ItemID = new.ItemID)
and not exists (select * from CUSTINVOICE
where OrdID = new.OrdID)
begin
insert into V_CORDER (Price, InvID)
select Price,
(select coalesce (max (InvID),0)+1 from CUSTINVOICE)
from ITEM where ItemID = new.ItemID;

update ITEM
set QonHand = QonHand - new.Qty
where ItemID = new.ItemID;

update CUSTORDER
set Price = (select Price from V_CORDER)
where OrdID = new.OrdID;

insert into CUSTINVOICE (InvID,DatelInv,OrdID,CustID,ItemID,
Price, Qty, State)
values ((select InvID from V_CORDER),new.DateOrd,
new.OrdID,new.CustID,new.ItemID,
(select Price from V_CORDER),new.Qty, 'sent');

delete from V_CORDER;
end;

Script 8.60 - Trigger that controls the creation of a customer order when the quantity
on hand is sufficient

Controlling CUSTORDER row in Case 2

The task of trigger TRG_CUSTORDER_INS2 is to cope with the cases of insufficient
quantity on hand, according to the rules of Case 2. It uses four local variables: Price,
the customer unit price of the item, Qavail the quantity available without issuing a
new supplier order, mQeco, the quantity that will be needed to replenish the stock of
the item (the smallest multiple of Qeco such that Qavail will become positive), and
InvID, the Id of the next invoice. It comprises the following queries (Script 8.61):

1. The first query (insert) stores in V_CORDER the current values of the local
variables.

2. The next query (update) subtract the quantity ordered by the customer from
the quantity on hand (QonHand) of the ITEM row.

3. Ablock of three queries is executed if the quantity availableis not sufficient.?

* The quantity to order from the supplier (mQeco) is added to the quantity on
order (Qord) of the ITEM row.

25. For the current SQLfast version, that uses the SQLite DBMS, this conditional block must be
transformed according to the rules of Section 8.2.7.

Printed 23/9/20

60 Case study 8 ¢ Active databases

* A best offer for the item is identified if none has been selected yet
(SuppID is null) and notified (update) in the ITEM row.

* A supplier order is created by inserting a row in SUPPORDER table.

create trigger TRG_CUSTORDER_INS2
after insert on CUSTORDER
for each row
when new.Qty > (select QonHand from ITEM
where ItemID = new.ItemID)
and not exists (select * from CUSTINVOICE
where OrdID = new.OrdID)
begin
insert into V_CORDER (Price,Qavail,mQeco, InvID)
select Price,Qavail,
Qeco* (truncate (1.* (new.Qty-Qavail) /Qeco) +1),
(select coalesce (max(InvID),0)+1 from CUSTINVOICE)
from ITEM where ItemID = new.ItemID;

update ITEM
set QonHand = QonHand - new.Qty
where ItemID = new.ItemID;

if (new.Qty > (select Qavail from V_CORDER)) ;

update ITEM
set Qord = Qord + (select mQeco from V_CORDER)
where ItemID = new.ItemID;

update ITEM

set (SuppID, PriceSupp) = (select SuppID,Price from OFFER
where ItemID = new.ItemID
order by Price,Delay limit 1)

where ItemID = new.ItemID and SuppID is null;

insert into SUPPORDER (OrdID,DateOrd, ItemID, SupplID,
Price,Qty, State)
select (select coalesce (max (OrdID),0)+1 from SUPPORDER) ,
new.DateOrd, new.ItemID, SuppID, PriceSupp,
(select mQeco from V_CORDER), 'assigned'
from ITEM
where ItemID = new.ItemID;

endif;

update CUSTORDER

set Price = (select Price from V_CORDER),
State = 'pending'

where OrdID = new.OrdID;

insert into CUSTINVOICE (InvID,DateInv,OrdID,CustID,ItemID,
Price,Qty, State)
values ((select InvID from V_CORDER),new.DateOrd,
new.OrdID,new.CustID,new.ItemID,
(select Price from V_CORDER),new.Qty, 'pending') ;

delete from V_CORDER;
end;

Script 8.61 - Trigger that controls the creation of a customer order when the quantity
on hand is not sufficient

Printed 23/9/20

61

4. Then, the CUSTORDER row just inserted is completed (update) with the unit
price of the item. In addition, its state is set to 'pending'.

5. Aninvoice is created by inserting a row in table CUSTINVOICE. Its state is also
that of the customer order: 'pending'.

6. Finally, the local variables are reset.

8.18.2Executing a supplier order

Script 8.57 shows that the execution of all the orders of a definite item sent by the
retail shop to a supplier is asked for by sending closing messages to the corre-
sponding SUPPORDER rows, i.e., by changing their state from 'assigned' to 'closed'.
The reaction consists in adjusting the quantities of the referenced ITEM row: the
value of Qord of the order is added to the quantity of hand (QonHand) of the item and
subtracted from its quantity on order (Qord) (Script 8.62).

create trigger TRG SUPPORDER UPD
after update of State on SUPPORDER
for each row
when new.State = 'closed!
begin
update ITEM
set QonHand QonHand + Qord,
Qord Qord - new.Qord
where ItemID = new.ItemID;
end;

Script 8.62 - Execution of a supplier order that (partially) replenish the stock of an
item

When the last supplier order has been executed, the value of Qord of the ITEM row
falls to 0. Setting the quantity on order to zero is a message to the ITEM row telling it
that its pending invoices can now be processed. This is implemented in the trigger of
Script 8.63. It comprises two queries:

1. The first one changes the state of pending invoices to 'sent'.
2. The second one re-evaluates the best offer for this item.

So, by changing the state of pending invoices, this trigger sends them a message to
tell them that they can now be sent to their customers. The reaction is coded in
trigger CUSTINVOICE_UPD1 of Script 8.64.

This trigger comprises three operations:

1. Calling procedure writeFile that prints (in a text file) the invoice to be sent to
the customer. This procedure uses two arguments, the name of the text file and
the character string to write in it. In the latter argument, symbol 'en' denotes
a new line and function thousandSep formats a numeric character string by in-
serting thousands separators ('1234567' becomes '1,234,567").

Printed 23/9/20

62

Case study 8 ¢ Active databases

create trigger TRG_ITEM_UPD
after update of Qord on ITEM
for each row

when new.Qord = 0

begin
update CUSTINVOICE
set State = 'sent'
where ItemID = new.ItemID
and State = 'pending';

update ITEM
set (SuppID, PriceSupp)

(select SuppID, Price from OFFER
where

ItemID new.ItemID

order by Price,Delay limit 1)

where ItemID new.ItemID;

end;

Script 8.63 - When the stock of an item
orders and invoices can be processed

is fully replenished, its pending customer

create trigger TRG CUSTINVOICE UPD1

after insert,
for each row

update of State on CUSTINVOICE

when new.State = 'sent'
begin
writeFile ('D:/SQLfast/Files/INVOICE-'| |new.InvID||'.txt"',

"INVOICE no '||new.InvID
I@n ____________________ 1
'@n CUSTOMER: ' | [new.CustID
'@n Date: '| |new.DatelInv
'@n Item: '||new.ItemID
'@n Qty: '||new.Qty
'@n Price: '| |new.Price
I@n ____________________ 1
'@n Total: !
thousandSep (cast (new.Qty*new.Price as char),',"');

update CUSTORDER set State
where OrdID new.OrdID;

update CUSTOMER set Account
where CustID new.CustID;
end;

'invoiced'

Account new.Amount

Script 8.64 - Sending the invoice to the customer of an order

2. Setting the state of the (pending) order of the invoice to 'invoiced'.

3. Subtracting the amount of the invoice from the account balance of the custom-

Cr.

Printed 23/9/20

63

8.18.3Registering the payment of an invoice

According to Script 8.56, the registration of the payment of an invoice is triggered
by the sending of a message to this invoice. This message is created by changing its
status to 'paid’. When fired, trigger cusTINvoIcE uprD2 closes the order of this
invoice then updates the account balance of the customer (Script 8.65).

create trigger TRG CUSTINVOICE UPD2
after update of State on CUSTINVOICE
for each row

when new.State = 'paid'
begin
update CUSTORDER
set State = 'closed!'
where OrdID = (select OrdID from CUSTINVOICE
where InvID = new.InvID) ;

update CUSTOMER
set Account = Account + new.Amount
where CustID = new.CustID;

end;

Script 8.65 - This invoice has been paid

8.18.4Event architecture of the active database

The graph of Figure 8.21 extends that of Figure 8.20. It shows the flow of messages
that control the cascade of operations triggered by the three user interactions:
placing a customer order, paying an invoice and replenishing an item stock. We
observe that some tables appear more than once in this graph. Indeed, the messages
sent by a table depend on the messages it receives. So, merging table nodes would
reduce the information content of the graph.

8.19 Verification of an active database

The set of triggers in a database can make up a complex system in that the activation
of one trigger can fire other triggers. So, it is not unusual that the first executions of
an active database either crash or produce unexpected results.

Hence the need for specific techniques to analyze a trigger system to identify as
early as possible flaws in its architecture. There are two main families of analysis
techniques: static and dynamic. Static analysis techniques rely on the visual or auto-
mated examination of the source code of the triggers. Dynamic techniques extract
and analyze information on the behavior of the triggers at run time.

Printed 23/9/20

64 Case study 8 ¢ Active databases

We will examine informally some of these techniques.

Register-CUSTORDER-GUI | | Replenish-TEM-GUI | | Register-PAYMENT-GUI
insert State = ‘closed’ State = ‘paid’
CUSTORDER SUPPORDER
l Qord =0
ITEM

State = ‘sent’

State = ‘sent’

v

CUSTINVOICE CUSTINVOICE

State = ‘invoiced’ State = ‘closed’

CUSTORDER

Figure 8.21 - The graph of the messages controlling the business application

8.19.1Static analysis: checking trigger circuits

One of the major concerns of active database development is whether the execution
of the trigger system being built will terminate whatever the initial event that trig-
gers it. Infinite execution may occur when the code includes some form of recur-
sivity, either in the explicit form of recursive triggers or when a trigger T executes
data modifications that start a chain of modifications that ultimately fires T itself.

Let us consider directed graph F defined as follows. Each node represents a
trigger and each arc (tp,tq) indicates tells that the body of tp includes modification
queries that may fire trigger tq. If graph F is acyclic, that is, it includes no circuit,
then the all the possible executions of the trigger system are ensured to terminate in
a finite number of steps (lesser or equal to the number of triggers). If, on the
contrary, F includes one or more circuits, then there is a risk of infinite execution.

Hence the importance of checking the acyclicity of F. If the test fails, we must
identify the circuits of F for in-depth examination. These processes are carried out
by two algorithms that are developed and illustrated in Appendix C.

The trigger system of the RETAIL.db database is depicted in Figure 8.22. A simple
visual inspection shows that it is acyclic, so that there is no risk of infinite execu-
tion, whatever the initial data.

Printed 23/9/20

65

TRG_CUSTORDER_INS1 | |TRG_CUSTORDER_INSZ | |SUPPORDER_UPD

y
| TRG_ITEM_UPD |

CUSTINVOICE_UPD2

CUSTINVOICE_UPD3

BN p—
SN p—

Figure 8.22 - The trigger graph of the RETAIL database

8.19.2Dynamic analysis: tracing the execution of the active data-
base

Trigger tracing techniques consists in extracting, storing and analyzing information
on the execution of a trigger system. This information constitutes the trace of this
execution. By examining the traces produced for a representative set of initial data,
we can derive some important properties of these triggers. In particular, such traces
can show us when and where the triggers exhibit unexpected behavior.

An in-depth description of tracing techniques in the SQLfast environment has
been presented in Chapter 23 (Aid to SQLfast script development) of the SQLfast
manual. In this chapter, Section 23.7 is devoted to a short introduction to tracing
trigger execution. The reader is referred to this chapter before proceeding with this
reading.

We will describe two complementary categories of traces: event-based and oper-
ation-based. Both rely on UDF functions provided by the SQLfast language that can
be invoked from within trigger body. They are specific to SQLite but their generali-
zation to other DBMS is straightforward.2

About the concept of process level in trigger tracing

Before describing these types of trace, we must refine the concept of process level
introduced in Chapter 23 of the SQLfast manual and used in the tracing of SQLfast
code. The process level specifies the depth of a process?’ in the call hierarchy at run
time. If process P, with level k calls script Q, thus creating a process of Q, then the
level of the latter process is k+1. The main script is at level 0.

26. All the more since big DBMS already include tracing features that are missing in SQLite.

Printed 23/9/20

66 Case study 8 ¢ Active databases

The process level associated with each trace of a statement is stored in column
Tlevel of table TRACES. To trace trigger executions, we also need to define some
form of process level. We consider each trigger activation as a process. When an
event created by a statement of a process (of a script or of a trigger) with level k is
caught by a trigger, the activation of the latter is said to have level k+1.

In script execution, the process level if provided by system variable processLevel.
However, this variable is not available from within a trigger execution, so that we
will simulate it as a global variable that must be controlled manually. Since it must
be available by all the triggers, it is translated into elementary table TLEVEL
comprising a single column, Level, and a single row (see Section 8.2.7). Its defini-
tion and management are specified as shown in Script 8.66.

create table TLEVEL as select 0 as Level;
create trigger TRG CUSTORDER INS1
begin

update TLEVEL set Level = Level + 1;

update TLEVEL set Level = Level - 1;
end;

Script 8.66 - Implementation of the process level in triggers

Event-based tracing

Event-based tracing reports on the events that fire triggers. For each event, it gener-
ates a short description of the SQL data modification query and the start and end of
the execution of the body of the triggers that fired. This is done by the instrumenta-
tion of the code of the body with procedure writeMessage(<message>) that writes
character string <message> in the output window.28 A summary of the event is
crafted from states old and new of the current row. The expected result, produced by
the execution of trigger TRG_CUSTORDER_INS1, is shown in Figure 8.23.

It must be noticed that, in addition to the six functional triggers
TRG_CUSTORDER_INS1, TRG CUSTORDER INS2, TRG ITEM UPD (renamed
TRG_ITEM UPD2), TRG CUSTINVOICE UPD1, TRG_CUSTINVOICE UPD2 and
TRG_SUPPORDER UPD (see Figure 8.22), we have created six auxiliary triggers
(TRG_CUSTOMER UPD, TRG_CUSTORDER_UPD, etc.) the sole objective of which is

27. A process is not the same thing as a script. It is the execution of a script. In a recursive execu-
tion, in which, for example, script A calls script B, which itself calls script A, this execution
includes two processes of A and one process of B.

28. Remember that this procedure is implemented as a UDF function. Due to SQLite's limitations
regarding trigger body syntax, the call to this function is made in the form $messages.

Printed 23/9/20

67

to write we were here in the trace. These additional triggers catch the events created
by the functional triggers but that do not fire any other functional trigger.

For each trigger activation, the trace comprises four sections:

the text of the event (insert into CUSTORDER ...),

— a label marking the start of the body, together with the identification of the
trigger (> Enter TRG_CUSTOMER INS1),

— for each query of the body that fires a trigger, and for each row affected by this
query, the trace of this trigger; this trace is indented wrt its parent trace to make
the parent-child hierarchy explicit,

a label marking the end of the body (< Exit TRG CUSTOMER INS1).

The trace of Figure 8.23 shows that the recording of a customer order, initiated by
event "insert into CUSTORDER ...)", fires trigger TRG CUSTORDER INS1. The
execution of its body creates four events that fire successively triggers
TRG_ITEM UPD1, TRG CUSTORDER UPD, TRG CUSTINVOICE INS and TRG CUST
1NvoICE upD2. The execution of the Ilatter then fires triggers TRG cUST
INVOICE_UPD2 and TRG CUSTOMER UPD.

EVENT: insert into CUSTORDER (1, '2020-08-30','C400"',
'PA45',--,60, 'recorded')
> Enter TRG_CUSTORDER_ INS1

EVENT: update ITEM set QonHand = 20
> Enter TRG_ITEM UPD1
< Exit TRG_ITEM UPD1

EVENT: update CUSTORDER set Price = 48
> Enter TRG_CUSTORDER_UPD
< Exit TRG_CUSTORDER UPD

EVENT: insert into CUSTINVOICE (1,'2020-08-30',1,'C400"',

'PA45"',48,60,2880, 'recorded')

> Enter TRG_CUSTINVOICE_ INS
< Exit TRG_CUSTINVOICE INS

EVENT: update CUSTINVOICE set State = 'sent'
> Enter TRG_CUSTINVOICE UPD2
EVENT: update CUSTORDER set State = 'invoiced'

> Enter TRG_CUSTORDER_ UPD
< Exit TRG_CUSTORDER UPD
EVENT: update CUSTOMER set Account = -2880
> Enter TRG_CUSTOMER_ UPD
< Exit TRG_CUSTOMER UPD
< Exit TRG_CUSTINVOICE UPD2
< Exit TRG_CUSTORDER_INS1

Figure 8.23 - Event trace of the creation of a customer order when the quantity
ordered is available

The trace has been generated by the specific instrumentation of trigger
TRG_CUSTORDER_INS1 (in blue in Script 8.60). The indentation of child traces
within the trace of their parent is produced by the expression " (select repeat ('
',Level*4) from TLEVEL)"? that creates a space string from the process level
stored in TLEVEL.

Printed 23/9/20

68 Case study 8 ¢ Active databases

create trigger TRG_CUSTORDER INS1

begin

update TLEVEL set Level = Level + 1;
- TraCing -—------- - oo oo oo
writeMessage ((select repeat (' ',Level*4) from TLEVEL)
'EVENT: insert into CUSTORDER ('
new.OrdID| | ',
1111 | new.Dateord| [||,
""||new.CustID||""||','
""||new.ItemID||""||','
|__||||,|
new.Qty||',"
IllY||new'State||lYIl||I)Y),.
writeMessage ((select repeat (' ',Level*4) from TLEVEL)
||' > Enter TRG CUSTORDER INS1');
-- TracCing -—------ - - - m oo oo
writeMessage ((select repeat(' ', Level*4) from TLEVEL)

||' < Exit TRG CUSTORDER INS1');

update TLEVEL set Level = Level - 1;
end;

Script 8.67 - Instrumentation of trigger TRG_CUSTORDER_INS1 for event tracing

Operation-based tracing

The operation-based tracing of triggers is an extension of the tracing of scripts
described in Chapter 23 of the SQLfast manual. It consists in inserting in table
TRACES of database TRACING.db the information on the execution of each query of

the trigger bodies.

In the same way as we did to implement event-based tracing, we will instrument
the body of the triggers we want to control through procedure writeTrace (idx,
tim,pro, lev,nat, raw,prep).’? If we insert this procedure just before each
SQL query, we will store a description of this query similar to those of pure SQLfast
statements. In Script 8.68, procedure writeTrace will store in table TRACES the state
of query "update ITEM ... where ItemID = new.ItemID" of trigger TRG

CUST ORDER_INS1 before its execution. We observe that:
— the value of column Tindex is set manually,

29. Function repeat (s, n) produces a character string formed by n occurrences of string s.

30. That will appear as strace$ (. ..) in SQLfast scripts.

Printed 23/9/20

69

— the name of the procedure (column Tproc) is built as the concatenation of the
database name and the trigger name; this combination is unique,

the process level (Tlevel) is drawn from column Level of table TLEVEL,

the nature (Tnature) of the query is 0 (native elementary),

— the prepared version of the query (PrepStat) is built from the column values of
the new state of the current row.

When processed by procedure writeTrace, the value of Tlevel will be augmented by
the value of system variable procLevel. In this way, the activation of a trigger will
appear in the trace as the calling of a procedure. In a procedure at level k, a trigger
fired by a data modification query will appear at level k+1. So, the trace of the trig-
gers will be seamlessly integrated in that of the SQLfast statements.

create trigger TRG_CUSTORDER_INSI1
after insert on CUSTORDER
for each row
when new.Qty <= (select QonHand from ITEM
where ItemID = new.ItemID)
and not exists (select * from CUSTINVOICE
where OrdID = new.OrdID)
begin
update TLEVEL set Level = Level + 1;
insert into V_CORDER (Price, InvID) ...;
writeTrace (5, current timestamp full(),
'RETAIL.db/TRG_CUSTORDER_INSl',
(select Level from TLEVEL), O,

'update ITEM set QonHand = QonHand - new.Qty
where ItemID = new.ItemID',

'update ITEM set QonHand = QonHand - ' || new.Qty||'
where ItemID = ''' ||new.ItemID|| '''',61);

update ITEM

set QonHand = QonHand - new.Qty

where ItemID = new.ItemID;
update CUSTORDER ...;

insert into CUSTINVOICE ...;
delete from V_CORDER;

update TLEVEL set Level = Level - 1;
end;

Script 8.68 - Writing the trace of query "update ITEM" in trigger TRG_CUSTORDER
INS1

Instrumenting triggers for event-based or operation-based tracing may be felt partic-
ularly convoluted. This is true. However, the good news is that the structure of the
tracing statements appears to be quite systematic, in such a way that they can be
automatically generated in the trigger code from the information provided by dictio-

Printed 23/9/20

70 Case study 8 ¢ Active databases

nary tables SYS_TRIGGER_FULL and SYS_TRIGGER_COMP_FULL. The code of
Script 8.69 is a skeleton of such a generator. Completing it is fairly easy and is left as
an exercise.

set db = RETAIL.db;
openDB Dictionary-of-$dbs;
for trid, taid, tanam, trnam, trwh, trev, trcol, trcon
= [select TrigID, TableID, TableName, TrigName, TrigWhen,
TrigEvent, TrigCol, TrigCond
from SYS TRIGGER FULL order by TrigID] ;
if ('Strcols' = '')
write-b trigger $trnam$ S$Strwh$ Strevs on Stanam$;
if ('Strcols' <> ''")
write-b trigger S$trnam$ Strwh$ Strev$s of $trcols
on Stanams$;
write begin;
for seq,exp = [select StatSeq, StatExpr
from SYS TRIGGER COMP_ FULL
where TrigID = $trid$ order by StatSeq];

if (startswith(lower('§exp§'), 'select raise')) next;
write @S2 writeTrace ($seqg$,...,Sdb/Strnam$,1,0,...);;
write @S2 Sexp$;;
endfor;
write end;;
endfor;

Script 8.69 - Automating the instrumentation of the triggers of the RETAIL.db
database

8.19.3Replaying transactions

Let us consider a sequence of transactions such as those of the scenario of Section
8.13.4: registering two customer orders, then replenishing the stock of an item and
finally registering the payment of a customer. Let us also consider that we want to
execute them again. There can be several reasons for this:

— a bug has been found and fixed, then we want the four transactions being
carried out again,
— we want to show newly hired employees how the application works,

— if the RETAIL application we have developed actually is just a playable proto-
type for a future, full scale, application, this scenario (and its effect on the data-
base) is a part of the specifications3! of the latter,

31. The specifications of an application is a document that defines precisely the goals of the
application, without anticipating the way it will be implemented [short and incomplete
definition!]

Printed 23/9/20

71

— we find this scenario to be an excellent test case, to be used to verify that the
future versions of the application work as expected.

What we want is called replaying these transactions. In this context, the architecture
of the RETAIL application in the form of an active database presents an interesting
property. Since starting each interaction between a user and the application trans-
lates into a single data modification query, collecting then running these queries
allow us to replay a series of transactions.

For example, our scenario results from the execution of the GUI scripts detailed
in Section 8.17. These scripts have translated the user requests into the four queries
recalled in Script 8.70. So, if we execute the latter script, we replay this scenario
exactly, provided the database is reset in the same initial state of course.

insert into CUSTORDER (OrdID,DateOrd, CustID,ItemID, Qty)
values (1,'2020-03-27','C400', 'PA45"',60) ;

insert into CUSTORDER (OrdID,DateOrd, CustID,ItemID, Qty)
values (2,'2020-03-27','K111l', 'PA45',35);

update SUPPORDER set State = 'closed'

where SuppID = 'F-725' and ItemID = 'PA45'

and State = 'assigned';

update CUSTINVOICE set State = 'paid' where InvID = 1;

Script 8.70 - Replaying the scenario of Section 8.13.4

The nice aspect of this exercise is that such replay scripts can be automatically
generated. By enabling the tracing of the SQLfast scripts, limited to SQL queries
(for this we check button Trace SQL statements only), these queries are stored into
the TRACES table. We just extract them by the simple query of Script 8.71 to build
the replay script.

select PrepStat from TRACES where Tproc like '$-GUI';

Script 8.71 - Extracting the SQL queries for replaying a scenario

8.20 Limits of this case study

It is worth mentioning some of the simplifying assumptions which our active data-
base is based on.

— The suppliers are idealized and abstract entities: their stock of items are infi-
nite, they are absolutely reliable and they never require to be paid. In addition,

Printed 23/9/20

72 Case study 8 ¢ Active databases

their item catalogue is the same as that of the retail shop (notably same Id and
same description).

— Then, the customers are quite liable and trusted people: they always come and
take their items away, they never cancel their orders and they always pay their
invoices in due time.

— The shop and supplier employees never make reading, encoding, typing or
operation errors.

— The IT infrastructure and the application programs never crash.

— The best offer selection policy guarantees that only one supplier at a time is
asked to replenish the stock of an item.

Coping with these limitations to build a really usable application would require
hundreds of code pages. This is left as an exercise!

8.21 Conclusions, history and extensions

In this case study, we have tried to illustrate two outstanding properties of active
databases in general and triggers in particular: their power and the wide range of
their applications.

It is interesting to note that triggers have been available for several decades in the
early versions of most DBMS. One of their first use was to implement referential
integrity maintenance well before foreign keys were available. This use is now
deprecated unless one wants to implement non standard foreign key behavior.

From deductive databases to triggers

The concept of ECA (Event-Condition-Action) rule, or active rule, comes from the
domain of artificial intelligence as it was perceived in the eighties.3> The objective
was to describe in a declarative way the dynamic evolution of knowledge. Another
source of the concept is logic programming, where knowledge is represented by a
collection of raw facts plus a set of derivation rules, possibly recursive. These
concepts have been introduced in database models and technology to form the
family of deductive databases. Some prototype implementations have been devel-
oped in the eighties but due to complex logic problems and low performance, none
have really met industrial success. Most have disappeared in the nineties.3?

32. In these years, statistical analysis of large data sets still was considered a domain distinct
from that of A.L

33. Datalog is another attempt to couple databases and logic programming. It is an extended
subset of the Prolog language (https://en.wikipedia.org/wiki/Datalog). Many Datalog implemen-
tations still are available, either as standalone interpreters or as language extensions (e.g.
PyDatalog, a Python module).

Printed 23/9/20

73

In some sense, active databases (mainly based on SQL views and triggers) are the
remains of the historical deductive database dream. Instead of relying on a built-in
generic deductive engine (similar to that of Prolog interpreters) the database
designer now must build, from scratch, for each database, an adhoc deductive
engine through which new data and operations are derived from base data and
queries. Of course, implementing this engine with triggers often proves a non trivial
task for large applications.

Recursive programming

Managing and exploiting recursive data structures can be done with recursive
queries but also through recursive triggers. This is a point that we have not
addressed in this study though it would deserve a full chapter in its own. Several
application examples are developed in the SQLfast manual, Chapter 19 (Recursive
programming).

Modeling and design

Developing large business applications has long been supported by a hierarchy of
models and design processes.3* To develop a database, the standard approach starts
by building an abstract, technology independent conceptual schema, which is then
translated into a specific technology, such as a relational or NoSQL DBMS. Solid
models and design processes also exist to help develop the programs and the GUI of
business applications.

Despite many attempts in the nineties,33 there are few such comprehensive guide-
lines to create active databases.

We have also shown that a trigger system (the set of triggers attached to a data-
base) is more difficult to model and to design than standard 3-tiers systems.
Obviously, there is no single approach to design them.

— Integrity maintenance and redundancy control can be modeled by a set of equa-
tions for which we identify the events that may disturb them. For each of them,
we specify the reaction that restores the equation.

— Building a temporal database will require quite different reasoning based on
the consistency of a temporal sequence of database states (see the case studies
on Temporal Databases).

— For business applications implementation where business rules are moved
from the programs to the database, we could think of an approach inspired by

34. Look for example at the UML ecosystem that offers more than a dozen specific models to
describe the different aspects of complex, interactive, data intensive, applications.

35. In particularly the IDEA approach to information system design, the modeling language of
which, named Chimera included ECA rules. See Ceri S. and Fraternali, P. The Sory of the IDEA
Methodology, 1996, Springer [https://link.springer.com/content/pdf/10.1007/3-540-63107-
0_1.pdf].

Printed 23/9/20

74 Case study 8 ¢ Active databases

object-oriented modeling methods. We identify in the database representative
objects classes (implemented as tables or aggregates of tables), with which we
associate attributes and methods. These methods are activated by sending
messages to objects through events.

Finally, what may active databases be good for?

Active databases generally are known for implementing non trivial integrity proper-
ties, that is, those that cannot be controlled by the standard uniqueness, referential
and not null constraints nor by check predicates.

We have shown that the triggers of a databases can also be used to silently
perform useful ancillary functions that simplify the task of application program-
mers. Redundancy management, updatable views, logging data changes and
managing temporal data are some of the most useful applications.

All these examples share a common goal, showing that, far beyond being a mere
data store, a database can be a very powerful knowledge management system.3¢

However, implementing full size business applications as active databases, that
is, moving business rules from application programs to the database, is a quite
different matter!

The experiment described in Section 8.15 suggests that such an enterprise is real-
istic, at least for small size applications. However, whether this architecture will
prove better (and according to which criteria) than the standard one is, at least,
questionable.

There are a number of arguments against trigger based architecture.

— Developing and understanding the code of a trigger system may prove more
complex than that of a standard architecture. Indeed, there exist since long a
rich variety of models and methods intended to help developers analyze,
specify, verify and implement complex application programs. (Almost) none of
them is able to usefully support the development of trigger-based technology.
More in this in the next section.

— Active databases technology relies on strongly intricated programming para-
digms, namely procedural, logic and event-based, in addition to the complexity
of the RDBMS data structures. Many programmers, otherwise proficient in
classical development languages (e.g., Java, Swing and ODBC) are not
familiar with these concepts.

— Trigger body languages generally lack the resources that usually are available
in standard programming languages. For instance, there is no easy way to
execute a GUI dialogue, to catch an exception, to control the current transac-
tion or use some API.

36. In addition, gathering and storing in a unique, secure, place (the database schema) a set of
rules that are common to many applications contribute to the integrity of the data.

Printed 23/9/20

75

* There is no unique syntax nor execution model for triggers. Though the trigger
concept is understood by most DBMS, its implementation may considerably
vary, in particular concerning the way conflict situation are resolved. We have
already discussed this issue in Section8.18.1. This means that a non trivial
trigger system cannot be ported to another DBMS without an in-depth revision.

Reference
Paton, N., W. and Diaz, O. Active Database Systems, ACM Computing Surveys,
Vol. 31, No. 1, March 1999, pp. 63-103 [https://www.academia.edu/7023990/
Active_database_systems]
One of the most comprehensive study on active databases. Includes a very large
bibliography.

8.22 The implementation

The algorithms and programs developed in this study are available as SQLfast
scripts in directory SQLfast/Scripts/Case-Studies/Case_Active_DB.

They can be run from main script ActiveDB-Main.sql, that displays the selection
box of Figure 8.24.

74 [Select one] — O >
PLAYING WITH ACTIVE DATABASES
BASIC APLICATIONS The RETAIL SHOP business application
" Integrity management " The classical architecture
* Non standard system behavior & The active DB architecture
" Updatable view TRIGGER SYSTEMS ANALYSIS
" Redundancy management and derived data ¢ Create database "DB-with-Circuits.db" (mandatory)
" Data modification journaling * Checking trigger circuits
" Alerters
" Type-subtype implementation
" Temporal databases
oK Cancel

Figure 8.24 - Selection of an Active DB appplication

Printed 23/9/20

76 Case study 8 ¢ Active databases

The last action, Checking trigger circuits, evaluates the triggers of two databases,
namely RETAIL.db, created by the RETAIL Shop application (active DB version) and
DB-with-Circuits.db, created by action Create database "DB-with-Circuits.db".

Action The active DB architecture opens the selection box of Figure 8.25. It
shows four categories of operations:

— INITITIALIZATION: creating the RETAIL.db database, ditto with event tracing,
ditto with query tracing, load initial data in the base tables.

— RETAIL OPERATIONS. The operations to execute by the retail shop employee:
creating a customer, creating an item, updating an item, recording customer
order data and recording the payment of a customer.

— SUPPLIER OPERATIONS. The operations to execute by the employee(s) of the
supplier(s): creating a supplier, adding an offer, updating an offer, and replen-
ishing an item at the retail shop.

— SHOW DATA. Show the content of a table. Print a selected invoice.

These are the operations of interest to observe the behavior of the application. Other
operations (e.g., updating and deleting elements) can be easily added.

7i [Select one | — O x
ARETAIL SHOP MANAGEMENT SYSTEM (Active version)
INITIALIZATION RETAIL OPERATIONS SUPPLIER OPERATIONS SHOW DATA
" Create DB schema " Register a CUSTOMER ¢ Register a SUPPLIER " Show CUSTOMER
" Create DB schema (with event traces) " Register an [TEM " Register an OFFER " Show ITEM
" Create DB schema (with query traces) Update an [TEM " Update an OFFER " Show CUSTORDER
" Initialize all base tables & Enter a CUSTORDER " Replenish an ITEM " Show CUSTINVOICE
" Enter a PAYMENT " Print invoices
{” Show SUPPLIER
" Show OFFER
" Show SUPPORDER
0K Cancel

Figure 8.25 - The main menu of the retail shop application (active DB version)

Grouping the retail shop and the supplier(s) operations in a single selection box is
quite artificial, as is a single work station were shared by the employees of all the
actors.

We suggest a more natural organization, in which the retail shop and each
supplier are assigned their own application. Its implementation is easy:

Printed 23/9/20

77

— Split the main script functions into two versions: ActiveDB-Shop-Main.sql and
ActiveDB-Supplier-Main.sql.

— In the SQLfast directory, create as many copies of file SQLfast.exe as there are
suppliers (named, for instance, SQLfast_D-109.exe, SQLfast_E-034.exe, etc.)

— The original file will be run by the shop employee, who then executes the first
main script. Each supplier employee runs its own copy of SQLfast.exe and
execute the supplier main script. These applications run in parallel and access
the same database.

This is a good way to experiment with parallel execution of scripts!

These scripts are provided without warranty of any kind. Their sole objectives are to
concretely illustrate the concepts of the case study and to help the readers master
these concepts, notably in order to let them develop their own applications.

Printed 23/9/20

78

Case study 8 ¢ Active databases

8.23 Appendix A - The initial state of the database

The initial content of base tables is depicted in Figures 8.26 to 8.29. Observations:

— In table CUSTOMER, no unpaid invoice, so, Account = 0.

— In table ITEM, no quantity on order (Qord = 0, therefore QonHand = Qavail) and
the inventory has just been replenished (QonHand = Qeco). No best offer

selected yet.

— Table OFFER is fairly large (29 rows!). Since we will concentrate on item

PA45, we have shown the offers of this item only.

CUSTOMER CustID Name Address City Account
B062 TAYLOR 139, Elm Park Atlanta 0
B112 WEBER 127, Hauptstrafe Berlin 0
B332 MORETTI 1604, via Cavour Roma 0
B512 ROBERTS 108, Baker Street London 0
co03 WRIGHT 27, Portobello Road London 0
Ccl23 SMITH 95B/2, Park Street Atlanta 0
C400 NEUMANN 454, Kirchenstrafle Berlin 0
D063 SMITH 1083, King's Road London 0
FO010 SCHMIDT 56, Bahnhofplatz Berlin 0
FO11 JONES 10, Downing Street London 0
F400 LOPEZ 54B, Calle Carretas Madrid 0
K111 JANSEN 5B, Grote Halstraat Amsterdam 0
K729 EDWARDS 5, Abbey Road London 0
1422 GARCIA 40, W. Lake Avenue Atlanta 0
sS127 JOHNSON 2164, Fifth Avenue Atlanta 0
S712 DUBOIS 58, avenue Montaigne Paris 0

Figure 8.26 - Initial state of the CUSTOMER table

ITEM ItemID ... Price SuppID SuppPrice QonHand Qord Qavail Qeco
CS262 70 -- -- 40 0 40 40
CS264 85 -- -- 125 0 125 125
CS464 125 -- -- 100 0 100 100
PA45 48 -- -- 80 0 80 80
PA6O 55 -- -- 60 0 60 60
PH222 105 -- -- 160 0 160 160
PS222 94 -- -- 110 0 110 110

SUPPLIER SuppID Name City
D-109 Wood&Steel Berlin
E-034 Golden Key London
F-725 BricoMat Paris
N-601 Materia-2000 Amsterdam
U-542 Smithé&Son Atlanta

Figure 8.28 - Initial state of SUPPLIER table

Printed 23/9/20

79

OFFER SuppID ItemID Price Delay

o
I
~
N
ul
N
0
N
o
N
ul
i

NWNOAP WO RERPRWORPAPRPRWORNMERERNMNWOWOWOONWSDNDW

Figure 8.29 - Initial state of OFFER table

The transaction tables are empty.

Printed 23/9/20

80 Case study 8 ¢ Active databases

8.24 Appendix B - RETAIL application: task analysis

Before coding our application, whatever architecture is chosen, we must identify the
tasks to implement and precisely specify their effect on the database.

We will consider a limited set of representative tasks to be performed by the
employees of the retail shop and of the suppliers: registering the data of new basic
entities, registering a customer order, executing a supplier order and registering a
customer payment. Other data management tasks, such as updating the contents of
base tables, would be quite simple to analyze and implement.

8.24.1Register basic entities
Registering a customer, an item, a supplier and an offer pose no particular problems.
We just have to take care of the initial value of some critical attributes:

— The Amount column of the new CUSTOMER row is set to 0.

— For each new ITEM row, columns SuppID and SuppPrice, that define the best
offer, are left undefined (i.e., null). Columns QonHand and Qavail are set to the
same non negative value and Qord is set to 0. The values of Price (customer unit
price) and of Qeco (the economic order quantity) are specified by the retail
shop manager.

8.24.2Register a customer order

The first operation consists in inserting a new row in table CUSTORDER. Columns
OrdID, DateOrd, CustID and ItemID are extracted from the registering dialogue box.
The value of Price is null and that of State is 'recorded'.

Let co be the CUSTORDER row just inserted, it the ITEM row referenced by
co.ltemID and cu the CUSTOMER row referenced by co.CustID.

We consider two main cases, depending on the value of co.Qty compared to that of
QonHand in the referenced ITEM row.

— Case 1. co.Qty < it.QonHand: there is enough quantity on hand, the order can be
executed.

* update ITEM row it:

subtract co.Qty from it. QonHand

(Qavail, being a generated column, is automatically updated)
» update CUSTORDER row co:

set co.Price = it.Price

set co.State = 'invoiced'

 insert row ci in table CUSTINVOICE:

Printed 23/9/20

81

set ci.(Datelnv, OrdID, CustID, ItemID, Price, Qty, Amount, State) =
(co.DateOrd, co.OrdID, co.CustID, co.ltemID, co.Price, co.Qty * co.Price,
'sent’)
* generate an invoice document from the data of row ci

* update CUSTOMER row cu:
subtract ci.Amount from cu.Account

— Case 2. co.Qty > it.QonHand: there is not enough quantity on hand, the order
cannot be executed.
Considering whether the quantity on order can suffice to satisfy the customer
order leads us to two subcases.

— Case 2.1. co.Qty < it.Qavail : there is enough quantity available, the order can
be executed as soon as the quantity on order (it.Qord) is delivered by the refer-
ence supplier.

+ update referenced ITEM row it:
subtract co.Qty from it.QonHand
subtract co.Qty from it.Qavail
* update CUSTORDER row co:
set co.Price = it.Price
set co.State = 'pending'..
* insert row ci in table CUSTINVOICE:
set ci.(Datelnv, OrdID, CustID, ltemID, Price, Qty, Amount, State) =
(co.DateOrd, co.0rdID, co.CustID, co.ltemID, co.Price, co.Qty * co.Price,
'pending’)
— Case 2.2. co.Qty > it.Qavail : there is not enough quantity available, a new
order must be sent to the reference supplier.

+ compute mQeco, the total quantity to order:

mQeco = smallest multiple of it.Qeco such that new value of it.Qavail is
non negative

* update referenced ITEM row it:
subtract co.Qty from it.QonHand
add mQeco to it.Qord
subtract co.Qty from it.QonHand then add mQeco

+ if order co is the first one for item it, select best offer and update it.SuppID
and it.PriceSupp
* insert row so in table into SUPPORDER:

set s0.(OrdID, DateOrd, ltemID, SupplD, Price, Qty, State) =
(<next value of SUPPORDER.OrdID>, co.DateOrd, it.ItemID, it.SupplD,

Printed 23/9/20

82 Case study 8 ¢ Active databases

it.SuppPrice, mQeco, 'assigned’)
» update CUSTORDER row co:
set co.Price = it.Price
set co.State = 'pending'.
* insert row ci in table CUSTINVOICE:
set ci.(Datelnv, OrdID, CustID, ltemID, Price, Qty, Amount, State) =

(co.DateOrd, co.0rdID, co.CustID, co.ltemID, co.Price, co.Qty * co.Price,
'pending')

8.24.3Register a customer payment

Through the dialogue box, the employee of the retail shop specifies an invoice Id.
Let ci be the corresponding CUSTINVOICE row, co the CUSTORDER row referenced
by ci.OrdID and cu the CUSTOMER row referenced by ci.CustiD.

» update CUSTINVOICE row ci:
set ci.State = 'paid’

» update CUSTORDER row co referenced by ci:
set co.State = 'closed'

» update CUSTOMER row cu referenced by ci:
add ci.Amount to cu.Account

8.24.4Execute a supplier order

An employee of a supplier decides to execute supplier orders from the retail shop.
Through the dialogue box, the employee selects a couple of Id’s (sup, itm) that iden-
tifies the set of SuppOrder rows where SupplierlD = sup, ItemID = itm and State =
'assigned' (which means still awaiting processing). It is important to note that the
reference supplier does not change between two replenishments. Consequently, all
the (supplier) orders for an item are sent to the same supplier.3’

let it be the ITEM row where ItemID = itm

let totQord the sum of Qord of the SUPPORDER rows
where SupplierID = sup, ItemID = itm and State = 'assigned'

* update ITEM row it:
add totQord to it. QonHand'
set it.Qord =0

37. Allowing orders to be sent to different suppliers before the next replenishment would make
the rules more complex.

Printed 23/9/20

83

* recalculate the best offer (result: OFFER row denoted by bo) and update ITEM
row it:

set it.SuppID = bo.SupplD
set it.SuppPrice = bo.Price
* update SUPPORDER rows so
where SupplierID = sup, ItemID = itm and State = 'assigned':
set so.State = 'closed'

» update CUSTORDER rows co that reference it and where State = 'pending':
set co.State = 'invoiced'
 for ci in CUSTINVOICE rows that reference it and where State = 'pending':
let cu be the CUSTOMER row referenced by ci:
+ update CUSTOMER row cu:

subtract ci.Amount from cu.Account

+ generate an invoice document from the data of each CUSTINVOICE row ci that
references it and where State = 'pending'

» update CUSTINVOICE rows ci that reference it and where State = 'pending'
set co.State = 'sent’

Printed 23/9/20

84 Case study 8 ¢ Active databases

8.25 Appendix C - Circuit detection in directed graphs

Avoiding infinite executions of a trigger system is not an easy problem. In this
section, we will suggest some graph analysis algorithms that can help us identify
directed graphs to detect and identify circuits.

Let us consider event e0 that fires trigger t0, the body of which includes data
modification queries. If the latter create events that are caught by other triggers,
initial event e0 starts a chain of data modification operations that can be of any
length. This is what Figure 8.30 illustrates. When fired through an insert intoR
query, trigger TRG_R_INS executes two data modification queries that fire triggers
TRG_S_DEL and TRG_T_UPD. These triggers, if their body also include data modi-
fication queries, will create events that are likely to fire other triggers, and so on.

This event-trigger pattern creates a graph in which nodes represent triggers and
directed arcs represent the direct firing relation between two triggers. The initial
question on trigger termination reduces to the nature of this graph. If the graph is
acyclic, that is, if it contains no circuits, we are sure that, once started, the trigger
system will terminate. If the graph contains circuit(s), then its execution could cause
termination problems. Checking whether a directed graph is acyclic is a standard
graph theory problem.3® Solving it is particularly simple and intuitive. However,
finding these circuits may be a bit more difficult.

TRG_S_DEL (after delete on S)

TRG_R_INS (after insert on R)
- delete from S
-update T

TRG_T_UPD (after update on T)

Figure 8.30 - When fired through an insert into R query, trigger TRG_R_INS executes
data modification queries that fire triggers TRG_S_DEL and TRG_T_UPD

To study the acyclicity of trigger graphs in a practical way, we will consider the
small schema of Script 8.72, that creates database DB-with-Circuits.db. This schema
comprises the definitions of five tables and five triggers.

To derive the trigger graph from these definition, we will rely on the system
tables of the dictionary. Among them, tables SYS_TRIGGER and
SYS_TRIGGER_COMP include all the information needed to create this graph.
These tables have been described in detail in Chapter 20 of the SQLfast Manual
(Metadata - Walking on the wild side). As a reminder, table SYS_TRIGGER comprises
the information of the header of triggers:

— TrigID: unique trigger id in the schema

38. It is addressed in two other case studies: The book of which you are the hero and From data
bulk loading to database book writing.

Printed 23/9/20

85

— TablelD: id of the parent table

— TrigName: name of the trigger

— TrigWhen: when the trigger will fire (before, after, instead of)

— TrigEvent: the event that fires the trigger (insert, delete, update)

— TrigCol: if the event is 'update ', the list of columns (none for a general update)
— TrigScope: the scope or granularity of the trigger (statement, row)

— TrigCond: the condition of the when clause.

System table SYS_TRIGGER_COMP describes the statements of the body part of the
trigger:

— TrigStatID: unique id of the statement in the schema

— TrigID: id of the parent trigger

— StatSeq: sequence number of the statement in the trigger body
— StatTable: the name of the table processed by the statement

— StatOper: the operation performed by the statement (insert, delete,
update, others)

— StatCol: in case of update operation, the list of columns updated

— StatExpr: the integral text of the statement.

Chapter 20 also suggests that examining and processing the system tables may be
more comfortable when their data are permanently stored into an independent data-
base. This dictionary database can be created by script Create-persistent-dictio-
nary.sql, available in the directory of this case study. Its name is formed as follows:
'Dictionary-of-' + <current database name>. Let us create it for our illustration data-
base, with name Dictionary-of-DB-with-Circuits.db.

We observe that this dictionary database comprises additional tables the name of
which is postfixed by '_FULL'. They are extensions of other system tables in order to
ease their examination and their processing. In particular:

— table SYS_TRIGGER_FULL comprises new column TableName (name of the
parent table)

— table SYS_TRIGGER_COMP_FULL comprises two new columns, TrigName (name
of the trigger) and TablelD (id of the trigger parent table).

Figure 8.31 shows the description of trigger R_INS (left) and of its second statement
(right) in these extended system tables. The trigger has been assigned TrigID = 1. The
id of the other triggers are shown in the right side of Script 8.72.

Printed 23/9/20

86 Case study 8 ¢ Active databases

createOrReplaceDB DB-with-Circuits.db;

create table R (R1 int,R2 int,R3 int)
create table S (S1 int,S2 int,S3 int) ;
create table T (Tl int,T2 int,T3 int);
create table U (Ul int,U2 int,U3 int)
create table W (W1l int,W2 int,W3 int)

create trigger R INS after insert on R [1]
begin insert into S wvalues(1,2,3);
update T set T2=2,T3=3; end;

create trigger S INS after insert on S [2]
begin delete from U; end;

create trigger T UPD after update on T [3]
begin update T set T1l=1;
update W set W3=3; end;
create trigger U DEL after delete on U [4]

begin insert into S wvalues(1l,2,3);
update W set Wl=1; end;

create trigger W UPD after update of W3 on W [5]
begin update W set W2=2; end;
closeDB;

Script 8.72 - A small database that may include trigger circuits

& [SOLfast askCombo] — O X 74 [SOLfast askCombo] — O *
Update or Delete rows of SYS_TRIGGER_FULL Update or Delete rows of SYS_TRIGGER_COMP_FULL
% Update the current row % Update the current row
" Delete the current row " Delete the current row
TriglD: 1 Trig5tatiD: 2
TablelD: 1 Trigll: 1
TableMame: R Trighame: R_INS
Trighame: F_IMNS StatSeq: 2
TrigWhen: after TablelD: 3
TrigEvent: insert StatTable: T
TrigCol: StatOper update
TrigScope: row StatCol: T2, T3
TrigCond: StatExpr: update Tset T2=2,T3=3
Ext: Ext:
oK Cancel oK Cancel

Figure 8.31 - Description of trigger R_INS and of its second body component "update
T set T2=2,T3=3"

Printed 23/9/20

87

Before deriving and processing the trigger graph, we will apply a little modification
in table SYS_TRIGGER_FULL in order to make the information more regular. When
the event of the trigger is a general update, that specifies no columns, it implicitly
specifies all the columns of the parent table. The code of Script 8.73 complete
column TrigCol of all triggers fired by a general update event.

update SYS TRIGGER_FULL
set TrigCol = (select group concat (ColName,',"')

from SYS COLUMN

where TableID = SYS TRIGGER FULL.TableID)
where TrigEvent = 'update' and TrigCol = '';

Script 8.73 - SYS_TRIGGER_FULL is completed with "TrigCol" of general "update"

Now, let us build the trigger graph. It will be stored in table BINARY as binary rela-
tion (TriglD1, TriglD2) where TrigiD1 denotes a trigger and TriglD2 a trigger that the
former is likely to fire. The content of this table is based on a simple syntactic anal-
ysis of the code of the triggers. Practically, row (11,t2) is inserted into table BINARY
if one of these conditions is met:

1. (1)the body of trigger t1 comprises a statement insert into X and (2) trigger
t2 is fired by any event of the form insert on X,

2. (1)the body of trigger t1 comprises a statement delete from X and (2) trigger
t2 is fired by any event of the form delete on X,

3. (1) the body of trigger t1 comprises a statement update X affecting columns
StatCol, (2) trigger t2 is fired by any event update on X, affecting (explicitly
or implicitly) columns TrigCol and (3) column lists TrigCol and StatCol share at
least one common column.

According to the last rule, the statement "update T set T2=2,T3=3" of trigger
R_INS (TrigID = 1) will fire trigger T_UPD (TrigID = 3), the event of which is
"update on T", equivalent to "update T1,T2,T3 on T". Indeed, sets StatCol =
{T2,T3} and TrigCol = {T1,T2, T3} have elements {T2, T3} in common. There-
fore, (1,3) is a row of table BINARY.

On the contrary, the execution of trigger U_DEL will never fire trigger W_UPD
because sets StatCol = {W1} and TrigCol = {w3} have no common elements.

These rules are translated into the code of Script 8.74. The join associates the
rows of table SYS_TRIGGER_COMP_FULL (from which the value of TrigID1 will be
extracted) with those of table SYS_TRIGGER_FULL (from which the value of
TriglD2 will be extracted) when they share the same table name (C1.StatTable =
T2.TableName) and event (C1.StatOper = T2.TrigEvent). The third condition
selects the couples of rows that satisfy the three rules described above. The state of
BINARY is shown in Figure 8.32 and its graphical representation in Figure 8.33.

Printed 23/9/20

88

Case study 8 ¢ Active databases

create temp table BINARY as
select TrigIDl,TrigID2

from (select

from

where
and
and

Cl.TrigID as TrigID1l,Cl.StatOper,Cl.StatCol,

T2.TrigID as TrigID2,T2.TrigCol

SYS TRIGGER COMP FULL C1,

SYS TRIGGER FULL T2

Cl.StatTable = T2.TableName

Cl.StatOper = T2.TrigEvent

case

when Cl.StatOper = 'update'

then iif (itemInter(Cl.StatCol,T2.TrigCol,"',"') = '',
False, True)

else True

end) ;

Script 8.74 - Building the BINARY table

————— +--------—4
TrigIDl | TrigID2 |
————— +---------+

| 2 |

| 3 |

| 4 |

| 3 |

| 5 |

| 2 |

————— i

Figure 8.32 - Table BINARY derived from the schema of Script 8.72.

Q—CL ®
‘0 O

Figure 8.33 - Graphical representation of the rows of table BINARY

A first interesting question is whether the graph includes one or more circuit(s). To
belong to a circuit, a node must be the source of some arc(s) and the destination of
some (not necessary distinct) arc(s). A node that does not meet these conditions
cannot belong to a circuit.

Printed 23/9/20

89

Considering the graphical interpretation of Figure 8.33, we observe that arcs (1,2)
and (1,3) cannot participate in circuits since node 1 is the destination of no arc (it is
not accessible from another node). Similarly, node 5 is the source node of no arc.
Obviously, nodes 1 and 5 can be discarded from the graph without modifying its
cyclicity property. Finally, we observe that nodes 2, 3 and 4, that are both source and
destination of some arcs, cannot be eliminated based on the above rules.

This suggest a simple and intuitive algorithm:3° we eliminate the rows of BINARY
the TriglD2 value of which is not in the values of TriglD1 and the rows the TriglD2
value of which is not in the values of TrigID1. We process is to iterate until there is
no elimination possible. The graph is acyclic if table BINARY is empty. This algo-
rithms is translated in Script 8.75.

extract N1 = select count (*) from BINARY;
set N2 = 999;
while (3N13 < $N23);
delete from BINARY
where TrigID2 not in (select TrigIDl1l from BINARY) ;

delete from BINARY

where TrigIDl not in (select TrigID2 from BINARY) ;

set N2 = $N1S;

extract N1 = select count (*) from BINARY;
endwhile;

if (SN1$ = 0) write The graph is acyclic;

Script 8.75 - Checking whether a graph is acyclic

Now, we would like to extract the circuits hidden in table BINARY. A circuit is a path
in the graph (a suite of consecutive arcs) the end of which is the starting node. The
use of a recursive query clearly is a matter of course (Script 8.76). The CTE
PATHS(TFrom,TTo,Path) computes all the paths in BINARY the last node of which is
not already present (ignoring the first position).

We start by considering that each row of BINARY is an elementary path. Then, to
each of these paths, we add a matching row from BINARY, if any. We go on until we
try to add a node that has already been inserted into the path, in which case we stop
augmenting it. In this comparison, we only consider the nodes beyond the starting
one. When all the paths have been built in PATHS, the final query selects those for
which TFrom = TTo (Figure 8.34)

39. Called the Marimont algorithm.

Printed 23/9/20

90 Case study 8 ¢ Active databases

create temp view CIRCUIT (Circuit)
as with PATHS (TFrom, TTo,Path) as
(select TrigID1l,TrigID2,'.'||TrigID1l||'.'||TrigID2||"'."
from BINARY
union
select TFrom,TrigID2,Path||TrigID2||"'."
from PATHS, BINARY
where TTo = TrigIDl
and Path not like '.%.'||TrigID2||'.%'
)
select Path from PATHS where TFrom = TTo;

Script 8.76 - Computing the circuits of the graph BINARY

+--------- +
| Circuit |
+--------- +
| .3.3. |
| .2.4.2. |
| .4.2.4. |
+--------- +

Figure 8.34 - The circuits as shown by view CIRCUITS

Actually, we are not completely done. First, it would nice to discard the heading and
trailing dots. Then, we observe that each circuit is represented in view CIRCUITS by
as many rows as the circuit comprises nodes. For instance, the circuit formed by
nodes 2 and 4 is represented twice, by 2.4.2 and 4.2.4. Since any node of a circuit can
be, by convention, selected as its starting points, we suggest to represent each circuit
by a single expression, the first node of which has the smallest denotation, lexico-
graphically speaking, that is, here, "2.4.2". This is what Script 8.77 computes. Func-
tion trim removes leading and trailing dots, while function itemSort generates a
sorted permutation of the node denotations. This function requires four parameters:
the list to sort, the sorting direction (0 = ascending, 1 = descending), the uniqueness
(0 = duplicates preserved; 1 = duplicates discarded) and the separator. The result is
shown in Figure 8.35

select trim(min(Circuit),'.') as Circuit
from CIRCUIT
group by itemSort (trim(Circuit,'.'),0,'1','.");

Script 8.77 - Cleaning and reducing the expressions of circuits

Printed 23/9/20

91

4mmmmmmm o +
| Circuit |
oo mm oo +
2.4.2
3.3
e +

Figure 8.35 - The final view of the circuits of triggers

Conclusion on trigger (a)cyclic graph analysis

It is necessary to observe that the analysis of the trigger system developed above can
prove that its graph is acyclic. However, the fact that circuits have been detected in
the schema does not mean that they will lead to infinite execution. The real danger is
the existence of circuits at the data level. When the triggers in a circuit fire several
times, each of their executions must tend to an exit point. Practically, this condition
will be evaluated manually. Hence the importance to identify all the triggers partici-
pating in a circuit and to prove that each of their executions brings them closer to the
termination.

A row such as (t1,t2) can be interpreted as: trigger t1 will fire trigger t2, only if t2
includes no when clause and if data modification queries in the body of t1 include
no where clause, i.e., if the firing relation does not depend on the state of the data-
base. Otherwise the interpretation of (t1,t2) must be weaken as: trigger t1 may fire
trigger t2.

Let us modify our example schema by adding when and where clauses (Script
8.78). In trigger R_INS, the second body statement will execute under condition
new.R2 > 0, the value of which can only be known at execution time. If this state-
ment is executed, then trigger T_UPD will fire under the condition that column T3 is
assigned increasing values, a condition that too can only be evaluated at execution
time.

From the analysis of an active database, we can tell that the graph of the trigger
system is acyclic and therefore that there is no risk of infinite execution. However, if
this graph includes circuits, proving (or at least getting reasonable convinced) that
there is any (or no) risk of infinite execution would require either a more in-depth
syntactic analysis of the code or the tracing of the execution of the concerned trig-
gers for a representative collection of initial data.

When it is impossible to prove that a trigger circuit will never cause infinite
execution, it is recommended to include protection mechanisms in the code of the
incriminated triggers. See for example the section "Recursive queries against
cyclic data" in chapter 19 of the SQLfast manual (Recursive programming), which
proposes several techniques to stop infinite executions.

Printed 23/9/20

92 Case study 8 ¢ Active databases

create trigger R _INS after insert on R
begin insert into S values(1,2,3);
update T set T2=2,T3=3 where new.R2 > 0; end;

create trigger T UPD after update on T
when new.T3 > 01d.T3
begin update T set T1l=1;

update W set W3=3; end;

Script 8.78 - Trigger R_INS may fire trigger T_UPD

Printed 23/9/20

