
Case study 6 6

Schema-less databases - Part 3

Objective: This document studies a fourth family of alternative data
models, namely the object (or document) models. In these models, the
information is represented by complex objects in which properties can
be multivalued and composite.
Keywords: non-relational data model, key-value model, object model,
NoSQL, schema-less database, multivalued property, composite prop-
erty, document-oriented DBMS, MongoDB, CouchDB, Azure, Datas-
tore Oracle, metadata, index, data migration, schema conversion

6.1 Object view of Key-Value data

At the opposite of the Key-Value view of the data, the object view aggregates all the
data of each entity as a complex object associated with this entity. If we imagine
these data stored in a table, then each entity is described by a single (but complex)
row.

An interesting property of the Key-Value model developed in Part 2 (that
comprises table M_CUSTOMER for example) is that one can easily use it derive this
object1 view. With the object model, application programs read complex records
each comprising an entity Id (represented by, say, column Entity) and a list of Key-
Value couples represented by column Attributes (plural!).

2 Case study 6 • Schema-less databases - Part 3

Printed 5/6/23

Figure 6.1 shows some excerpts from a table in which the data of source table
CUSTOMER are structured as objects. This table has been generated by Script 6.1
from Key-Value table M_CUSTOMER.

+--------+--+
| Entity | Attributes |
+--------+--+
B062	{"Account":"-3200.0","Address":"72, r. de la Gare","Cat":"B2",
	"City":"Namur","CustID":"B062","Name":"GOFFIN"}
B112	{"Account":"1250.0","Address":"23, r. Dumont","Cat":"C1",
	"City":"Poitiers","CustID":"B112","Name":"HANSENNE"}
...	...
C123	{"Account":"-2300.0","Address":"25, r. Lemaître","Cat":"C1",
	"City":"Namur","CustID":"C123","Name":"MERCIER"}
C400	{"Account":"350.0","Address":"65, r. du Tertre","Cat":"B2",
	"City":"Poitiers","CustID":"C400","Name":"FERARD"}
D063	{"Account":"-2250.0","Address":"201, bvd du Nord",
	"City":"Toulouse","CustID":"D063","Name":"MERCIER"}
...	...
K111	{"Account":"720.0","Address":"180, r. Florimont","Cat":"B1",
	"City":"Lille","CustID":"K111","Name":"VANBIST"}
K729	{"Account":"0.0","Address":"40, r. Bransart",
	"City":"Toulouse","CustID":"K729","Name":"NEUMAN"}
L422	{"Account":"0.0","Address":"60, r. de Wépion","Cat":"C1",
	"City":"Namur","CustID":"L422","Name":"FRANCK"}
...	...
+--------+--+

Figure 6.1 - Object view of Key-Value data (JSON format)

Script 6.1 - Generating an object view of Key-Value data (JSON format)

The list of name:value pairs can be built according to a proprietary or standard
format such as Key-Value, CSV, XML or JSON (JavaScript Object Notation), the
format chosen in this example.

We notice that attribute Cat does not appear when its value is null (in entities
D063 and K729). This is consistent with a model according to which all (and only)
the information known about the entity is available in its record.

We also observe that the value of attribute Account is double-quoted, which is
useless since it is a number. This can be fixed easily with Script 6.2.

1. The term object refers to the concepts of Object-oriented data models, namely the ability to
build and manage complex data structures, as compared with the flat structure of standard rela-
tional tables. These data aggregates perfectly fit to (true) objects in Java programs for instance,
thus reducing the so-called impedance mismatch between databases and OO programs without
resorting to Object/Relational Mapping (O/RM) middleware.

select Entity,
 '{'
 ||group_concat('"'||Attribute||'":"'||Value||'"',',')
 ||'}' as Attributes
from M_CUSTOMER
group by Entity;

3

Printed 5/6/23

Script 6.2 - Generating an object view of Key-Value data (JSON format); fixing the
quoted representation of numeric values.

6.2 Objects with complex properties

So far, the attributes of the objects we have built have elementary values. Now we
will examine how to represent and compute complex properties, the instances of
which are multivalued, composite or both.

6.2.1 Multivalued properties
We want to add to customer data the list of amounts of the orders they have placed.
Of course, these amounts can be computed from the data available in the source
tables, but here, we want to store them as attributes in table M_CUSTOMER, just to
illustrate the point. Script 6.3 will insert these new rows. Of course, customers who
have not placed any order also have no Amount attribute.

Script 6.3 - Adding multivalued attribute Amount to table M_CUSTOMER

Not surprisingly, this query fails ("SQL execution error (columns Entity, Attribute are
not unique)"). Indeed, the primary key declared for M_CUSTOMER prevents us from
storing more than one attribute with a given name, which make customer C400
uncomfortable, with her three orders! To allow multiple attributes with the same
name, we must drop this constraint2 (Script 6.4). Now, the script works fine (Figure
6.2).

select Entity,
 '{'||group_concat('"'||Attribute||'":'
 ||case when Attribute in ('Account')
 then Value
 else '"'||Value||'"'
 end, ',')
 ||'}' as Attributes
from M_CUSTOMER
group by Entity

insert into M_CUSTOMER(Entity,Attribute,Value)
select CustID,'Amount',sum(Qord * Price)
from CUSTORDER O, DETAIL as D, PRODUCT as P
where O.OrdID = D.OrdID and D.ProdID = P.ProdID
group by CustID,O.OrdID;

4 Case study 6 • Schema-less databases - Part 3

Printed 5/6/23

Script 6.4 - Modifying the structure of table M_CUSTOMER to let it accommodate
multivalued attributes

+--------+-----------+----------------------+
| Entity | Attribute | Value |
+--------+-----------+----------------------+
...
C400	CustID	C400
C400	Name	FERARD
C400	Address	65, r. du Tertre
C400	City	Poitiers
C400	Cat	B2
C400	Account	350
C400	Amount	6400
C400	Amount	28500
C400	Amount	315
F011	CustID	F011
F011	Name	PONCELET
F011	Address	17, Clôs des Erables
F011	City	Toulouse
F011	Cat	B2
F011	Account	0
F011	Amount	169625
...
+--------+-----------+----------------------+

Figure 6.2 - A customer can have more than one attribute of the same type

It would be nice if we could produce JSON objects in which, for each customer, the
amount values are presented as an array, as in Figure 6.3.

 {"Account":"350", "Address":"65, r. du Tertre", "Cat":"B2",
 "City":"Poitiers", "CustID":"C400", "Name":"FERARD",
 "Amounts":[6400,28500,315]}

Figure 6.3 - A complex JSON object with multivalued attribute Amount

This is quite possible in SQL, but it is a bit more complex than the generation of flat
objects as those in Figure 6.1, because we have to combine two levels of aggrega-
tion, the highest for entity grouping and the innermost for array grouping.

2. We could have extended the primary key by adding to it column Value. However this would
have been valid only for distinct values of this attribute, which is clearly not the case in general
for attribute Amount.

create table M_CUSTOMER(
 Entity varchar(32) not null,
 Attribute varchar(32) not null,
 Value varchar(32)
 primary key (Entity,Attribute));

5

Printed 5/6/23

The simplest way to proceed is to preprocess the data in such a way that entities
have single-valued attributes only, so that standard Script 6.2 applies. This is
performed by a view (Script 6.5) that first defines new attribute Amounts through a
group_concat function, then adds all the other attributes. Figure 6.4 shows the
contents of this view.

+--------+-----------+----------------------+
| Entity | Attribute | Value |
+--------+-----------+----------------------+
...
C400	CustID	C400
C400	Name	FERARD
C400	Address	65, r. du Tertre
C400	City	Poitiers
C400	Cat	B2
C400	Account	350
C400	Amounts	[6400,28500,315]
...
+--------+-----------+----------------------+

Figure 6.4 - Collecting the multiple values of Amount in an array

Script 6.5 - Transforming sequences of Amount values in array Amounts

Script 6.6 then extracts the 2-level objects. It is an extension of Script 6.2 in which
numeric values are left unquoted.

6.2.2 Composite multivalued properties
Let us now try to generate even more complex objects, such as that of Figure 6.5. In
object C400, besides elementary attributes CustID, Name and City, we have intro-
duced attribute Orders, which itself is an array of objects, each one containing the
data of an order of the current customer. This attribute is both multivalued and
composite. It results from the integration of CUSTORDER data in the object repre-
senting a customer.

create temp view CUST_AMOUNT(Entity,Attribute,Value) as
select Entity,'Amounts','['||group_concat(Value,',')||']'
from M_CUSTOMER
where Attribute = 'Amount'
group by Entity
 union
select Entity,Attribute,Value
from M_CUSTOMER
where Attribute <> 'Amount';

6 Case study 6 • Schema-less databases - Part 3

Printed 5/6/23

Script 6.6 - Producing complex JSON objects including an array

 {"CustID":"C400","Name":"FERARD","City":"Poitiers",
 "Orders":[{"OrdID":"30179","DateOrd":"2015-12-22"},
 {"OrdID":"30184","DateOrd":"2015-12-23"},
 {"OrdID":"30186","DateOrd":"2016-01-02"}]
 }

Figure 6.5 - A JSON object comprising an array of composite objects

We could extract the information from Key-value table M_CUSTORDER but is easier
to start from source table CUSTORDER. Script 6.7 defines view CUST_ORDERS
that returns the data of Figure 6.6.

+--------+-----------+--+
| Entity | Attribute | Value |
+--------+-----------+--+
B512	Orders	[{"OrdID":"30188","DateOrd":"2016-01-03"}]
C400	Orders	[{"OrdID":"30179","DateOrd":"2015-12-22"},
		{"OrdID":"30184","DateOrd":"2015-12-23"},
		{"OrdID":"30186","DateOrd":"2016-01-02"}]
F011	Orders	[{"OrdID":"30185","DateOrd":"2016-01-02"}]
K111	Orders	[{"OrdID":"30178","DateOrd":"2015-12-21"}]
S127	Orders	[{"OrdID":"30182","DateOrd":"2015-12-23"}]
+--------+-----------+--+

Figure 6.6 - Build the values of attribute Orders as an array of JSON objects

select Entity,
 '{'
 ||group_concat('"'
 ||Attribute
 ||'":'
 ||case when Attribute in ('Account','Amounts')
 then Value
 else '"'||Value||'"'
 end,
 ',')
 ||'}' as Attributes
from CUST_AMOUNT
group by Entity;

7

Printed 5/6/23

Script 6.7 - Creating attribute Orders for each customer entity (customers who have
not placed orders are not represented)

To build the objects of Figure 6.5, we must slightly adapt the generation query so
that it works on the union of M_CUSTOMER and CUST_ORDERS (Script 6.8).

Script 6.8 - Producing complex JSON objects including an array of objects

6.3 Indexing objects

Let us consider that the JSON objects we have created above are stored in table
CUSTOMER_JSON with columns Entity and Attributes. We also suppose that there
are millions of rows in this table. Remembering how indexing a relational table is
easy through create index statements, we could worry about how we could index
complex, multivalued and/or composite, attributes such as those stored in column
Attributes. For instance, if we want to retrieve data on the customers who live in

create temp view CUST_ORDERS(Entity,Attribute,Value) as
select CustID,'Orders',
 '['||group_concat('{'
 ||'"OrdID":"'||OrdID||'","DateOrd":"'||DateOrd||'"'
 ||'}', ',')||']'
from CUSTORDER
group by CustID;

select Entity,
 '{'
 ||group_concat('"'
 ||Attribute
 ||'":'
 ||case when Attribute in ('Orders','Account')
 then Value
 else '"'||Value||'"'
 end,
 ',')
 ||'}' as Attributes
from (select Entity,Attribute,Value
 from M_CUSTOMER
 union
 select Entity,Attribute,Value
 from CUST_ORDERS)
where Entity in ('C400','B062','B512')
group by Entity;

8 Case study 6 • Schema-less databases - Part 3

Printed 5/6/23

Poitiers or who have placed an order on 2016-01-02, we have so far no straightfor-
ward way to get them but by selecting the objects through, say, a like predicate.
The corresponding query is simple but particularly inefficient, since it requires a full
scan of the table:

select *
from CUSTOMER_JSON
where Attributes like '%"City":"Poitiers"%';

Actually, indexing such structures is much easier than we could think. Let us
consider table M_CUSTOMER again. As is usual in most DBMS, an index is auto-
matically created on its primary key. We decide to create a second index on columns
(Attribute, Value) to get a fast access to all the entities from their attribute values:

create index XATTVAL on M_CUSTOMER(Attribute,Value);

As a consequence, the following query will return the set of desired Entity values
corresponding to customers living in Poitiers in a matter of tens of milliseconds:

select Entity
from M_CUSTOMER
where Attribute = 'City'
and Value = 'Poitiers';

Better, if we are only interested in indexing data on attribute City, we can create a
partial (or filtered) index, which is much smaller and therefore more efficient

create index XCITYVAL on M_CUSTOMER(Value)
where Attribute = 'City';

We then write the query of Script 6.9, that returns the attribute values of these enti-
ties in JSON format.

Script 6.9 - Which customers live in Poitiers?

select Entity,Attributes
from CUSTOMER_JSON
where Entity in (select Entity
 from M_CUSTOMER
 where Attribute = 'City'
 and Value = 'Poitiers');

9

Printed 5/6/23

6.4 Comparison of the data models

We have described a series of alternative data models that offer more generic data
structures than the standard relational model. By generic, we mean that some of the
data structures described by the schema are not specific to the application domain
the database is devoted to (e.g., columns Attribute and Value, which are domain inde-
pendent). To better understand this concept, let us identify the objects of a standard
relational schema the existence or the name of which is specific to the application
domain, therefore providing information on this domain:
• database: the name of the database usually suggests the nature of the application

domain (e.g., ORDERS.db)

• table: each table of a normalized database contains the data of a set of entities of
the same type. The name of the table should be close to that of this entity type.

• column: each column designates a property of the entities described by its table.
Here again, the name of the column should suggest that of this property.

• data type: some data types give hints on the meaning of the values of a column
(e.g., date, character, integer and the user-defined domains)

• unique key: defines an integrity constraint that translates an important rule of the
application domain (just think of the primary key (OrdID,ProdID) of table
DETAIL).

• foreign key: generally defines relationships between rows, and, therefore,
between entities.

Actually, the databases implemented in each of the alternate data models express
(almost) the same types of facts of the application domain. They differ on how and
where these fact types are specified: in the schema or in the data. For example, in the
Key-Value model, version 1, the table name identifies an entity type but its attributes
are defined by the value set of column Attribute.

This comparison is summarized in Table 6.1 below. The answer is S if the schema
provides the information, D if the information is given by the data, s if the informa-
tion is incompletely specified in the schema, d if the information is incompletely
specified in the data and ∅ if the information is not specified.

Considering the standard relational model as the reference, this table evaluates to
what extent the information contents of the schema of each alternative model is
preserved (we ignore the database name, which is present in each model). Another
way of describing this analysis could be: what do I learn on the application domain
when I read the schema? And, as a consequence, do the data include the missing
information?

Clearly, the schema of alternate data models is less rich and less expressive than
the relational model. This weakness is compensated by a greater flexibility: new
entity types and new attributes can be dynamically added without modifying the
schema.

10 Case study 6 • Schema-less databases - Part 3

Printed 5/6/23

 Table 6.1 - Data/metadata distribution in various data models

6.5 For once, most Object data models are created equal

The data structures described in this study have been adopted by the most recent
(and most popular) NoSQL DBMS, often under the family name Document-oriented
DBMS. Indeed, hierarchical structures of arbitrary complexity are typical of docu-
ments and forms. This model nicely mimics the organization of a document, much
more than flat relational structures, in which the components of documents are scat-
tered among several tables. As an example, the data of customer orders are distrib-
uted in tables CUSTORDER and DETAIL of database ORDERS.db, while, in the
object models, they are assembled into significant aggregates.

Among the most representative document-oriented DBMS we can mention
MongoDB (the most popular in 2017) but also CouchDB, Azure, Datastore and
Oracle NoSQL.

Interestingly, these hierarchical data structures which are at the basis of these
modern DBMS, are very ancient. First, they are part of to most standard program-
ming languages, such as COBOL (in which so-called record structures are
particularly sophisticated), Pascal, C and, to some extent, Python.

A well known proverb teaches us that there is no free lunch. While the ultimate
desirable form of relational databases comprises normalized tables3, that are (1)
devoid from any internal redundancies and (2) neutral wrt data application require-
ments, object databases generally include duplicated data and often are dedicated to
a specific application (and therefore less easily reusable). In addition, the manipula-

Entity type Property Datatype Unique key Relationship
 Relational S S S S S
 Universal table D S S ∅ ∅
 Column tables sa

a.Maybe, through some parts of the name of the column table

S S sb

b.Possible for single-component unique keys only

sc

c.Possible for single-component foreign keys only

 Key-value 1 S D ∅ ∅ ∅
 Object-ori-
ented

S D, sd

d.Maybe, through the name of the aggregate

∅ ∅ ∅

 Key-value 2 D D ∅ ∅ ∅

3. The concept of relational normalization will be studied in a further case study.

11

Printed 5/6/23

tion languages of object data structures are more complex and less powerful than
SQL.

6.6 The scripts

The scripts of the Object models as well as those of the models studied in Parts 1 and
2 are available in directory SQLfast/Scripts/Case-Studies/Case_Schemaless. They
can be run from main script Schemaless-MAIN.sql (Figure 6.7).

Figure 6.7 - Selecting a data model and experimenting with performances

These scripts are provided without warranty of any kind. Their sole objectives are to
concretely illustrate the concepts of the case study and to help the readers master
these concepts, notably in order to develop their own applications.

12 Case study 6 • Schema-less databases - Part 3

Printed 5/6/23

