
Case study 5 5

Schema-less databases - Part 2

Objective: This document studies a third family of alternative data
models, namely the Key-Value data structure. In these models, the
information is represented by triples that each defines the value of an
attribute of an entity. Several approaches are described, with increasing
levels of genericity. As in Part 1, migration and exploitation scripts are
developed for the ORDERS.db database.
Keywords: non-relational data model, NoSQL, schema-less database,
key-value model, triple, triplestore, RDF, SPARQL, description logic,
A-BOX, OWL, Redis, Berkley DB, data migration, schema conversion

5.1 Introduction

The Key-Value model is at the basis of many NoSQL DBMS (though we will see that
this name is misleading) but also of knowledge representation formalisms such as
OWL. The basic idea is the following: instead of storing value FERARD into column
Name of the CUSTOMER row describing customer C400, we store the triple
(C400, Name, FERARD) into a 3-column table named, say, M_CUSTOMER. 

A representative of this family of data model has been studied in Chapter 16 of
the SQLfast tutorial (Key-Value output format), in which the data of a table are
transformed into the format key = value through style script UTIL-SELECT-parame-
ters-for-KEY-VALUE:



2 Case study 5 • Schema-less databases - Part 2

Printed 5/6/23

CustID = B112
Name = HANSENNE
Address = 23, r. Dumont
etc.

In this section we will examine several ways to exploit the Key-value format, in
which some schema information (metadata), such as column names, are moved to
user data: Name is no longer the name of a column of the schema but just plain user
data.

The term Key being too technical for the domain we will discuss, we will use the
term attribute instead (Name is not a key of customers but an attribute or a property
thereof). However, we will keep the name Key-Value to designate this family of
models, a term which has become standard.

5.2 The Key-Value model - Version 1

The first approach consists in storing the data about each entity type in a specific
table. So, we create tables M_CUSTOMER, M_CUSTORDER, M_DETAIL and
M_PRODUCT, each containing the data of the corresponding table of the source data-
base.
Each table comprises three columns: 

– Entity, which denotes an entity of the application domain (a customer, an order,
a detail, a product), either through some kind of primary key (CustID for
customers for example) or through an abstract, technical identifier such as a
simple integer,

– Attribute, which contains the name of an attribute (e.g., Name, City, DateOrd,
Price),

– Value, which contains the value of this attribute for this entity (e.g., Férard,
London, 2017-03-28, 123.5).

For instance, row (C400, Name, FERARD) of table M_CUSTOMER tells that the
customer denoted by C400 has an attribute called Name, the value of which is
FERARD. Such rows are called triples. Excerpts of this table, which comprises 16 x
6 = 96 triples, are shown in Figure 5.1.1 

+--------+-----------+----------------------+
| Entity | Attribute | Value                |
+--------+-----------+----------------------+
| B062   | CustID    | B062                 |
| B062   | Name      | GOFFIN               |
| B062   | Address   | 72, r. de la Gare    |

1. The way null values are displayed in the result of select statements (here --) is specified by
parameter dispNull in initialization file SQLfast.ini.



3

Printed 5/6/23

| B062   | Account   | -3200.0              |
| B062   | Cat       | B2                   |
| B062   | City      | Namur                |
| B112   | CustID    | B112                 |
| B112   | Name      | HANSENNE             |
| B112   | Address   | 23, r. Dumont        |
| B112   | City      | Poitiers             |
| B112   | Cat       | C1                   |
| B112   | Account   | 1250.0               |
| ...    | ...       | ...                  |
| C400   | CustID    | C400                 |
| C400   | Name      | FERARD               |
| C400   | Address   | 65, r. du Tertre     |
| C400   | City      | Poitiers             |
| C400   | Cat       | B2                   |
| C400   | Account   | 350.0                |
| D063   | CustID    | D063                 |
| D063   | Name      | MERCIER              |
| D063   | Address   | 201, bvd du Nord     |
| D063   | City      | Toulouse             |
| D063   | Cat       | --                   |
| D063   | Account   | -2250.0              |
| ...    | ...       | ...                  |
+--------+-----------+----------------------+

Figure 5.1 - Excerpts of table M_CUSTOMER

5.2.1 Generating Key-Value data from the source tables
Script 5.1 creates the first two tables, M_CUSTOMER and M_CUSTORDER. We
notice that, apart from their names, these tables have exactly the same definition. We
also observe that column Value has been declared varchar, whatever the type,
numeric or character, of the source values that we will store in it.

Loading the data from the source database into the Key-value tables is carried out
by Script 5.2, which is simple and intuitive, but may not be very efficient for large
tables with many columns since it parses table CUSTOMER once for each of its
columns. 

Script 5.3 suggests an alternative technique to migrate the source data. It parses
source table CUSTOMER only once. For each source row and for each source
column, it inserts an attribute and its value in target table M_CUSTOMER. 

The fact that source values are first stored in SQLfast variables cus, nam, add,
cit, cat and acc before being inserted as constants in insert queries requires the
use of special variable-value substitution delimiter § instead of $. This way, internal
single quotes are doubled in character string constants, as required by the SQL
syntax. 



4 Case study 5 • Schema-less databases - Part 2

Printed 5/6/23

Script 5.1 - Structure of tables M_CUSTOMER and M_CUSTORDER

Script 5.2 - Generation of the contents of table M_CUSTOMER (pure SQL version)

Script 5.3 - Generation of the contents of table M_CUSTOMER (procedural version)

Observing that column Cat is nullable, we have to decide the way null values will be
represented: either by an attribute triple with a null value or by discarding this triple
for this entity. As suggested in Figure 5.1, we choose the first approach. Since the
SQL-for loop returns an empty string for each null value, we must translate this

create table M_CUSTOMER(
   Entity    varchar(32) not null,
   Attribute varchar(32) not null,
   Value     varchar(32),
   primary key (Entity,Attribute));

create table M_CUSTORDER(
   Entity    varchar(32) not null,
   Attribute varchar(32) not null,
   Value     varchar(32),
   primary key (Entity,Attribute));

. . .

insert into M_CUSTOMER (Entity,Attribute,Value) 
       select CustID, 'CustID', CustID from S_CUSTOMER;
 union select CustID, 'Name', Name from S_CUSTOMER;
 union select CustID, 'Address', Address from S_CUSTOMER;
 union select CustID, 'City', City from S_CUSTOMER;
 union select CustID, 'Cat', Cat from S_CUSTOMER;
 union select CustID, 'Account',
              cast(Account as char) from S_CUSTOMER;

for cus,nam,add,cit,cat,acc = [select CustID,Name,Address,City,
                               Cat,Account from CUSTOMER]
   insert into M_CUSTOMER values
          ('§cus§','CustID','§cus§'),
          ('§cus§','Name','§nam§'),
          ('§cus§','Address',§add§),
          ('§cus§','City','§cit§'),
          ('§cus§','Cat',
           case when ('§cat§' = '') then null else '§cat§' end),
          ('§cus§','Account',cast($acc$ as char));



5

Printed 5/6/23

empty string into a null value before inserting the triple in M_CUSTOMER. The SQL
conversion expression is simple:

case when '§cat§' = '' then null else '§cat§' end

We also note that the values of column Account, being numeric, must be converted in
character strings, which is required by the type of column Value.

5.2.2 The case of composite primary keys
All this works fine for source tables the primary key of which comprises one column
only. The case of table DETAIL is a bit more complex. The first idea would be to
create a Key-value table with four columns (Script XXX).

Script 5.4 - M_DETAIL: strange triples with four components!

This seems a bad idea in that it produces tables with different schemas, therefore
spoiling the nice uniform data structures. So, we better try to preserve the uniformity
of the concept of entity Id. Two valid techniques:

1. Denoting entities with an abstract identifier, such a pure integer, as we did in
some techniques of Part 1.

2. Building a single-valued id from the components of the primary key. For table
DETAIL, considering the syntax of OrdID and ProdID, their concatenation
would be fine:

OrdID||'-'||ProdID

With the second technique, the result is quite satisfying (Figure 5.2).

+-------------+-----------+-------+
| Entity      | Attribute | Value |
+-------------+-----------+-------+
| 30178-CS464 | OrdID     | 30178 |
| 30178-CS464 | ProdID    | CS464 |
| 30178-CS464 | Qord      | 25    |
| 30179-CS262 | OrdID     | 30179 |
| 30179-CS262 | ProdID    | CS262 |
| 30179-CS262 | Qord      | 60    |
| ...         | ...       | ...   |
| 30188-PH222 | OrdID     | 30188 |

create table M_DETAIL(
   Entity1   varchar(32) not null,
   Entity2   varchar(32) not null,
   Attribute varchar(32) not null,
   Value     varchar(32),
   primary key (Entity1,Entity2,Attribute));



6 Case study 5 • Schema-less databases - Part 2

Printed 5/6/23

| 30188-PH222 | ProdID    | PH222 |
| 30188-PH222 | Qord      | 92    |
+-------------+-----------+-------+

Figure 5.2 - Building triples from a table with a composite primary key

5.2.3 Rebuilding the source tables from their Key-Value expres-
sion

Script 5.5 rebuilds source table CUSTOMER by a multiple self-join of table
M_CUSTOMER. 

Script 5.5 - Generation of the contents of table CUSTOMER (SQL version 1)

Script 5.6, though a bit less intuitive at first glance, should be better, since it (hope-
fully) scans the table only once. It forms a group of triples for each entity. In each
group, it extracts the highest value of each attribute. Among the triples of this group,
only one has a true value for this attribute while all the others are assigned value '':

max(case when Attribute = 'Name' then Value else '' end)

Script 5.7, based on a simple scan of the source table, exhibits some interesting
programming patterns. The rows are sorted by Entity values, in such a way that all
the attribute rows of each entity are read consecutively.  The extract statement
starts the procedure by getting the first customer Id. Then, a loop parses all the rows
of M_CUSTOMER. Variable ce denotes the row currently being built.  The succes-
sive rows with the same Entity value form one row of the TMP_CUSTOMER table (a

insert into TMP_CUSTOMER(CustID,Name,Address,City,Cat,Account)
select M1.Value as CustID, M2.Value as Name, 
       M3.Value as Address, 
       M4.Value as City, M5.Value as Cat, 
       cast(M6.Value as decimal) AS Account
from   M_CUSTOMER M1, M_CUSTOMER M2, M_CUSTOMER M3, 
       M_CUSTOMER M4, M_CUSTOMER M5, M_CUSTOMER M6
where  M2.Entity = M1.Entity and M3.Entity = M1.Entity 
and    M4.Entity = M1.Entity and M5.Entity = M1.Entity
and    M6.Entity = M1.Entity
and    M1.Attribute = 'CustID'
and    M2.Attribute = 'Name'
and    M3.Attribute = 'Address'
and    M4.Attribute = 'City'
and    M5.Attribute = 'Cat'
and    M6.Attribute = 'Account'
order by CustID;



7

Printed 5/6/23

clone of table CUSTOMER).  The result of reading these rows is stored in variables
cus, nam, add, cit, cat and acc, that are then used to insert the current
TMP_CUSTOMER row.

When the loop terminates, these variables contain the data of the last row that has
still to be inserted.

The algorithm of this script is the usual way that has been used for decades to
create and process groups of records in sequential file processing. This approach is
interesting from a historical point of view (it may also help to solve some special
intricate problems) but it prevents the SQL engine to optimize the generation of
triples. 

. 

Script 5.6 - Generation of the contents of table CUSTOMER (SQL version 2)

5.2.4 About performance
Figure 5.3 compares the execution time of each variant of the two conversion
processes for increasing size of table CUSTOMER. These figures have been
computed by the script Schemaless2-Key-Value-Performance.sql in directory
Case_Schemaless.

– Generating column-tables: the pure SQL formula, that convert 32,768 source
rows in 0.8 second, is much faster than the procedural technique that requires
nearly one minute. However, the latter figure is not really significant. The
procedure has been written in SQLfast, whose execution overhead is (much)
higher than that of standard languages such as C, Java or even Python.

– Rebuilding CUSTOMER table: the multi-join SQL is the best technique to
recover the source table: it converts about 200,000 triples into 32,768 source
rows in less than 0.33 s. The SQL single scan is also quite good, with an execu-

insert into TMP_CUSTOMER(CustID,Name,Address,City,Cat,Account)
max(case when Attribute = 'CustID' 
         then Value else '' end) as CustID,
max(case when Attribute = 'Name' 
         then Value else '' end) as Name,
max(case when Attribute = 'Address' 
         then Value else '' end) as Address,
max(case when Attribute = 'City' 
         then Value else '' end) as City,
max(case when Attribute = 'Cat'
         then Value else null end) as Cat,
max(case when Attribute = 'Account' 
         then cast(Value as decimal) else -9999.9 end) as 
Account
from  M_CUSTOMER group by Entity;



8 Case study 5 • Schema-less databases - Part 2

Printed 5/6/23

tion time of less than 0.45 s. The procedural technique has soon lost the race,
for the same reason we have cited above.

Nevertheless, our goal merely is to experiment the concepts of alternative models
and not to develop high performance scripts for multi-terabyte databases!

Script 5.7 - Generation of the contents of table CUSTOMER (procedural version)

Figure 5.3 - Execution time, in ms., of the conversion processes applied to source 
CUSTOMER table for various number of rows

extract ce = select Entity from M_CUSTOMER order by Entity;

for e,a,v = [select * from M_CUSTOMER order by Entity];
   if ('$e$' = '$ce$');
      if ('$a$' = 'CustID')  set cus = $v$;
      if ('$a$' = 'Name')    set nam = $v$;
      if ('$a$' = 'Address') set add = $v$;
      if ('$a$' = 'City')    set cit = $v$;
      if ('$a$' = 'Cat')     set cat = $v$;
      if ('$a$' = 'Account') set acc = $v$;
   else;
      insert into TMP_CUSTOMER values('§cus§','§nam§','§add§',
      '§cit§',case when '§cat§'='' then null else '§cat§' end,
       cast($acc$ as decimal));

      set ce = $e$;
      if ('$a$' = 'CustID')  set cus = $v$;
      if ('$a$' = 'Name')    set nam = $v$;
      if ('$a$' = 'Address') set add = $v$;
      if ('$a$' = 'City')    set cit = $v$;
      if ('$a$' = 'Cat')     set cat = $v$;
      if ('$a$' = 'Account') set acc = $v$;
   endif;
endfor;

insert into TMP_CUSTOMER values('§cus§','§nam§','§add§',
      '§cit§',case when '§cat§'='' then null else '§cat§' end,
       cast($acc$ as decimal));

Size 16 256 1,024 4,096 32,768
Load M_CUSTOMER (SQL version) 1 4 23 81 829

Load M_CUSTOMER (procedural) 17 264 1,146 5,046 56,978

Rebuild CUSTOMER (SQL 1) 1 2 10 34 321

Rebuild CUSTOMER (SQL 2) 1 3 11 47 445

Rebuild CUSTOMER (Procedural) 307 5,395 23,313



9

Printed 5/6/23

5.2.5 Application
The Key-value model allows the same queries to be formulated as those working on
the source database. Scripts 5.8 to 5.9 are some examples.

Script 5.8 - Extracting data CustID, Name and City of the rows of table
M_CUSTOMER

Script 5.9 - Extracting data CustID and Name from the rows of table M_CUSTOMER

However, new kinds of queries can be written, based on the fact that the values of
different attributes are stored in the same column (Script 5.10) and on the fact that
attribute names are pure values which can be queried as well (Script 5.11) 

Script 5.10 - Which customers have a property value including characters B1?

Script 5.11 - Extracting all the data of table M_SHIPMENT where some attribute
names include the word date (whatever the case), such as ShipmentDate and
PaymentDate

select C1.Entity as CustID,C1.Value as Name,C2.Value as City
from   M_CUSTOMER C1, M_CUSTOMER C2
where  C1.Entity = C2.Entity
and    C1.Attribute = 'Name'
and    C2.Attribute = 'City'
order by C1.Entity;

select Entity as CustID, Value as Name
from   M_CUSTOMER
where  Attribute = 'Name';

select Entity,Attribute,Value
from   M_CUSTOMER
where  Value like '%B1%'
order by Entity;

select Entity,Attribute,Value
from   M_SHIPMENT
where  lower(Attribute) like '%date%'
order by Entity;



10 Case study 5 • Schema-less databases - Part 2

Printed 5/6/23

5.3 The Key-Value model - Version 2

In this variant of the Key-Value model, all the data of a database are stored in a single
table, whatever the entity type they belong to. Thus, there is one table for the whole
source database. The three columns Entity, Attribute and Value still are valid, but a
fourth column, EType is necessary if we want to keep the notion of entity type.
Considering the source ORDERS.db database, it is natural to call this unique table
ORDERS. This table can be declared by Script 5.12.

Script 5.12 - Table ORDERS hosts all the data of database ORDERS.

Figure 5.4 is an excerpt of the contents of table ORDERS. The entity ID of an entity
is the primary key value of the source row.  

+-----------+-------------+-------------+--------------------+
| EType     | Entity      | Attribute   | Value              |
+-----------+-------------+-------------+--------------------+
| CUSTOMER  | B112        | CustID      | B112               |
| CUSTOMER  | B112        | Name        | HANSENNE           |
| CUSTOMER  | B112        | Address     | 23, r. Dumont      |
| CUSTOMER  | B112        | City        | Poitiers           |
| CUSTOMER  | B112        | Cat         | C1                 |
| CUSTOMER  | B112        | Account     | 1250               |
| ...       | ...         | ...         | ...                |
| PRODUCT   | CS262       | ProdID      | CS262              |
| PRODUCT   | CS262       | Description | RAFT. PINE 200x6x2 |
| PRODUCT   | CS262       | Price       | 75                 |
| PRODUCT   | CS262       | QonHand     | 45                 |
| ...       | ...         | ...         | ...                |
| CUSTORDER | 30178       | OrdID       | 30178              |
| CUSTORDER | 30178       | CustID      | K111               |
| CUSTORDER | 30178       | DateOrd     | 2013-12-21         |
| ...       | ...         | ...         | ...                |
| DETAIL    | 30178-CS464 | OrdID       | 30178              |
| DETAIL    | 30178-CS464 | ProdID      | CS464              |
| DETAIL    | 30178-CS464 | Qord        | 25                 |
| ...       | ...         | ...         | ...                |
+-----------+-------------+-------------+--------------------+

Figure 5.4 - Contents of table ORDERS

Rebuilding the CUSTOMER table from ORDERS is a problem similar to that
addressed in Section 5.2.3.  Script 5.13 derives from variant 2 of Script 5.6.

create table ORDERS(
   EType      varchar(18) not null,
   Entity     varchar(15) not null,
   Attribute  varchar(32) not null,
   Value      varchar(64),
   primary key (EType,Entity,Attribute));



11

Printed 5/6/23

Script 5.13 - Reconstruction of table CUSTOMER from table ORDERS (variant 2)

5.4 The Key-Value model - Version 3

We can keep the triple format by merging columns EType and Entity, in such a way
that the values of this column are unique among all the entities of the application
domain (Figure 5.5). In this approach, the type of an entity is just an additional
attribute of the latter. For example, customer entity B112 can be uniquely denoted by
CUSTOMER-B112. Its type is 'CUSTOMER', while its name is 'HANSENNE'.

By using abstract entity Ids we can shrink column Entity and derive a more
concise triple table. However, the generation of these entity Ids is a bit more
complex than it was in the context of a single table. Here, all the entities of the data-
base are assigned a globally unique Id, whatever their type. This can be done in
several ways. One of them consist in creating an Id dictionary table in which, before
inserting a new entity, we record its type and primary key (column EType and Entity
as in Figure 5.4), so that a global abstract id, declared autoincrement, is automati-
cally generated. The latter is then used to denote this entity in table ORDERS.  

A trade-off between these entity identification techniques consists in coding both
the entity type and the entity within its type. This requires a small dictionary table
that assigns to each table name a numeric code and records the last entity number
created for this table. Before inserting an entity, we extract the table code from this
dictionary and we increment the last entity number. Figure 5.6 shows excerpts of
table ORDERS where column Entity denotes entities with this coding technique.

Figure 5.7 suggests a graphical interpretation of the composition of CUSTOMER
entity 01-00012.

select 
max(case when Attribute = 'CustID' 
         then Value else '' end) as CustID,
max(case when Attribute = 'Name' 
         then Value else '' end) as Name,
max(case when Attribute = 'Address' 
         then Value else '' end) as Address,
max(case when Attribute = 'City' 
         then Value else '' end) as City,
max(case when Attribute = 'Cat'
         then Value else null end) as Cat,
max(case when Attribute = 'Account' 
         then cast(Value as decimal) else -9999.9 end)
         as Account
from   ORDERS
where  EType = 'CUSTOMER'
group by Entity;



12 Case study 5 • Schema-less databases - Part 2

Printed 5/6/23

+---------------+-------------+--------------------+
| Entity        | Attribute   | Value              |
+---------------+-------------+--------------------+
| CUSTOMER-B112 | EType       | CUSTOMER           |
| CUSTOMER-B112 | CustID      | B112               |
| CUSTOMER-B112 | Name        | HANSENNE           |
| CUSTOMER-B112 | Address     | 23, r. Dumont      |
| CUSTOMER-B112 | City        | Poitiers           |
| CUSTOMER-B112 | Cat         | C1                 |
| CUSTOMER-B112 | Account     | 1250               |
| ...           | ...         | ...                |
| PRODUCT-CS262 | EType       | PRODUCT            |
| PRODUCT-CS262 | ProdID      | CS262              |
| PRODUCT-CS262 | Description | RAFT. PINE 200x6x2 |
| PRODUCT-CS262 | Price       | 75                 |
| PRODUCT-CS262 | QonHand     | 45                 |
| ...           | ...         | ...                |
+---------------+-------------+--------------------+

Figure 5.5 - Contents of database ORDERS reduced to triples (1)

+--------+-------------+--------------------+
| Entity | Attribute   | Value              |
+--------+-------------+--------------------+
| 01-001 | EType       | CUSTOMER           |
| 01-001 | CustID      | B112               |
| 01-001 | Name        | HANSENNE           |
| 01-001 | Address     | 23, r. Dumont      |
| 01-001 | City        | Poitiers           |
| 01-001 | Cat         | C1                 |
| 01-001 | Account     | 1250               |
|  ...   | ...         | ...                |
| 04-001 | EType       | PRODUCT            |
| 04-001 | ProdID      | CS262              |
| 04-001 | Description | RAFT. PINE 200x6x2 |
| 04-001 | Price       | 75                 |
| 04-001 | QonHand     | 45                 |
|  ...   | ...         | ...                |
+--------+-------------+--------------------+

Figure 5.6 - Contents of database ORDERS reduced to triples (2)

Figure 5.7 - Graphical representation of CUSTOMER entity 01-00012

01-00012

CustID K111

CUSTOMER
EType

VANBISTName

180, r. Florimont

Lille

B1

720

Address

City

Cat

Account

01-00012

CustID K111

CUSTOMER
EType

VANBISTName

180, r. Florimont

Lille

B1

720

Address

City

Cat

Account

01-00012

CustID K111

CUSTOMER
EType

VANBISTName

180, r. Florimont

Lille

B1

720

Address

City

Cat

Account



13

Printed 5/6/23

It is important to observe that the entity Ids in column Entity, despite the way they are
built, basically are meaningless. They could be replaced by arbitrary numbers or
character strings without information loss.

The generation of table ORDERS from the tables of database ORDERS.db is left
as an exercise.

This flexible way to represent facts about an application domain has been used to
support several popular knowledge representation languages and systems. RDF
(Resource Description Framework) is one of them.2 It represents facts through a
graph of resources. A resource is an object of any kind available locally or, more
generally, on the web. Resources are identified by their URI (Universal resource
identifier) or by a simple literal (number or character string). HTTP URL are a
special kind of URI. Edges between two resources specifies that the first one (the
subject) has, as property, the second one (the object). 

RDF data generally are stored in triplestore3, databases optimized to efficiently
store, manage and process large triplestores (currently several trillions triples).4 A
graph query language, SPARQL, derived from SQL, is associated with this data
model. 

5.4.1 Application to Description Logic
Description Logic (DL) is a formal language derived from First-order Logic (FOL)
and intended to precisely represent knowledge about a certain universe (what we
have called the application domain) and to reason on it. DL exists in several vari-
ants, depending on the part of FOL they translate. DL is used to define facts about
the universe, just like a database does. In addition, it allows general rules to be
stated, either to specify those of these facts that are valid (kind of integrity
constraints) and to infer new facts from those we already know.5

DL is the formal basis of ontology languages, in particular for the Semantic Web,
such as DAML, OIL, OWL and, more recently OWL2.

Several syntax have been proposed and inference engines have been developed to
define, store and process facts and general rules. The variant of DL we will talk
about in this section is particular simple, since it addresses the representation of
facts only. It comprises three constructs:

– individual: constant that is intended to denote a concrete or abstract thing of the
universe. For instance, 01-00001 and Toulouse are individuals.

2. https://www.w3.org/RDF/
3. https://en.wikipedia.org/wiki/Triplestore
4. https://www.w3.org/wiki/LargeTripleStores
5. https://en.wikipedia.org/wiki/Description_logic [July 2017]; Baader, F., Horrocks, C., Sattler,
U., An Introduction to Description Logics, Cambridge University Press, 2017



14 Case study 5 • Schema-less databases - Part 2

Printed 5/6/23

– concept: unary predicates that assigns a class to individuals. CUSTOMER(01-
00001) asserts that individual 01-00001 belongs to class CUSTOMER and
STRING(Toulouse) tells that individual Toulouse belongs to class STRING.

– roles: binary predicates used to assert a relationship between two individuals.
City(01-00001,Toulouse) tells that Toulouse is the (name of) city of customer
(denoted by) 01-00001.

The instantiation of concepts and roles with individuals forms a set of assertions that
describe the universe. In the DL vocabulary, they are collectively called the A-BOX. 

Actually, table ORDERS, that we have generated in this version of the Key-value
model, contains everything necessary to generate the A-BOX of the DL description
of our small universe comprising customers, orders, details and products. Gener-
ating the concept and role assertions requires two simple SQL queries (Scripts 5.14
and 5.15).

Script 5.14 - Generating concept assertions from table ORDERS

Script 5.15 - Generating role assertions from table ORDERS

Excerpts of their result sets is shown in Figures 5.8 and 5.9. Some comments on
these queries:

– the individual notations are quoted to allow commas inside values
– consequently, internal quotes must be doubled. This is the role of UDF function

doubleQuote.
– coalesce is a standard SQL function that returns the first non null value within

its argument list.

CUSTOMER('01-00001')
CUSTOMER('01-00002')
CUSTOMER('01-00003')
...
PRODUCT('02-00001')
PRODUCT('02-00002')
...
CUSTORDER('03-00001')
CUSTORDER('03-00002')

select distinct Value||'('''||Entity||''')' as Individuals 
from   ORDERS 
where  Attribute = 'EType';

select Attribute||'('||''''||Entity||''','''
       ||coalesce(doubleQuote(Value),'')||''')' as Roles
from   ORDERS 
where  Attribute <> 'EType';



15

Printed 5/6/23

...
DETAIL('04-00001')
DETAIL('04-00002')
...

Figure 5.8 - Excerpts of the assertions of the A-BOX (the individuals and the 
concepts)

CustID('01-00001','B062')
Name('01-00001','GOFFIN')
Address('01-00001','72, r. de la Gare')
City('01-00001','Namur')
Cat('01-00001','B2')
Account('01-00001','-3200')
...
CustID('01-00010','F011')
Name('01-00010','PONCELET')
Address('01-00010','17, Clôs des Erables')
City('01-00010','Toulouse')
Cat('01-00010','B2')
Account('01-00010','0')
...
OrdID('03-00005','30185')
CustID('03-00005','F011')
DateOrd('03-00005','2016-01-02')
...
OrdID('04-00007','30185')
ProdID('04-00007','CS464')
Qord('04-00007','260')

OrdID('04-00008','30185')
ProdID('04-00008','PA60')
Qord('04-00008','15')

OrdID('04-00009','30185')
ProdID('04-00009','PS222')
Qord('04-00009','600')
...
ProdID('02-00005','PA60')
Description('02-00005','NAILS STEEL 60 (1K)')
Price('02-00005','95')
QonHand('02-00005','134')
...
ProdID('02-00007','PS222')
Description('02-00007','PL. PINE 200x20x2')
Price('02-00007','185')
QonHand('02-00007','1220')
...
ProdID('02-00003','CS464')
Description('02-00003','RAFT. PINE 400x6x4')
Price('02-00003','220')
QonHand('02-00003','450')
...

Figure 5.9 - Excerpts of the assertions of the A-BOX (the roles)

In a relational database, a relationship between two entities is expressed by a foreign
keys between the rows that describe these entities. If the foreign key value of the



16 Case study 5 • Schema-less databases - Part 2

Printed 5/6/23

source row is equal to the primary key value of the target row, then a relationship
exists between these rows, and, as a consequence, between the entities described by
these rows. This complicated way to state inter-entity relationship becomes much
more simple in Description logic. 

For example, the fact that the order denoted by x (whatever its CustID value) has
been placed by the customer denoted by y (whatever their CustID value) will be
simply stated by the assertion:

placed_by(x,y)

In this representation, the assertions that represent the columns of foreign keys
become useless and can be discarded. 

Figure 5.10 collects the assertions that express the relationships between orders
and customers. The first expression tells us that the order denoted by '03-00001'
has been placed by the customer denoted by '01-00012'.

placed_by('03-00001','01-00012')
placed_by('03-00002','01-00007')
placed_by('03-00003','01-00015')
placed_by('03-00004','01-00007')
placed_by('03-00005','01-00010')
placed_by('03-00006','01-00007')
placed_by('03-00007','01-00004')

Figure 5.10 - Derivation of placed_by role assertions

Actually, placed_by assertions can be derived from the assertions of Figure 5.9
through a conversion process illustrated in Figure 5.11.

Figure 5.11 - Production of assertions of role placed_by

03-00001

01-00012
CustID

K111

CustID

CUSTOMER

CUSTORDER

EType

EType
30178OrdID



03-00001

01-00012
CustID

K111CUSTOMER

CUSTORDER

EType

EType
30178OrdID

placed_by

03-00001

01-00012
CustID

K111

CustID

CUSTOMER

CUSTORDER

EType

EType
30178OrdID03-00001

01-00012
CustID

K111

CustID

CUSTOMER

CUSTORDER

EType

EType
30178OrdID



03-00001

01-00012
CustID

K111CUSTOMER

CUSTORDER

EType

EType
30178OrdID

placed_by

03-00001

01-00012
CustID

K111CUSTOMER

CUSTORDER

EType

EType
30178OrdID

placed_by

03-00001

01-00012
CustID

K111CUSTOMER

CUSTORDER

EType

EType
30178OrdID

placed_by



17

Printed 5/6/23

Since the description of the rule language of DL is outside the scope of this study, we
will express this derivation rule as an equivalent6 SQL query on the triples of Figure
5.5. 

To help building this query, we will use the example of order 30178 that has been
placed by customer K111. The triples describing these two entities are reminded in
Figure 5.12. The four triples that will be used are marked with tags O1, O2, O3, O4.
The reasoning is as follows:

• the order is identified by three properties: 
– it is of type CUSTORDER [O1.Attribute = 'EType' and O1.Value = 
'CUSTORDER']

– the value of its attribute CustID is V [O2.Attribute = 'CustID']
– its entity Id is W in the two triples [O2.Entity = O1.Entity]

• the customer is identified by three properties: 
– it is of type CUSTOMER [O3.Attribute = 'EType' and  O3.Value = 
'CUSTOMER']

– the value of its attribute CustID is X [O4.Attribute = 'CustID']
– its entity Id is Y in the two triples [O4.Entity = O3.Entity]

• the link between them is expressed by property: 
– V = X [O2.Value = O4.Value]

• the role assertion can then be built: 
– placed_by(W,Y) [O1.Entity, O3.Entity]

The derivation query is shown in Script 5.16.

+----------+-------------+-------------------+
| Entity   | Attribute   | Value             |
+----------+-------------+-------------------+
| 01-00012 | EType       | CUSTOMER          |   O3
| 01-00012 | CustID      | K111              |   O4
| 01-00012 | Name        | VANBIST           |
| 01-00012 | Address     | 180, r. Florimont |
| 01-00012 | City        | Lille             |
| 01-00012 | Cat         | B1                |
| 01-00012 | Account     | 720               |
| ...      | ...         | ...               |
| 03-00001 | EType       | CUSTORDER         |   O1
| 03-00001 | OrdID       | 30178             |
| 03-00001 | CustID      | K111              |   O2
| 03-00001 | DateOrd     | 2015-12-21        |
| ...      | ...         | ...               |

Figure 5.12 - Two sets of roles expressing two entities and their relationship

6. Triples and role assertions are equivalent and both SQL and DL are based on FOL



18 Case study 5 • Schema-less databases - Part 2

Printed 5/6/23

Script 5.16 - SQL query that create placed_by assertions

Finally, what are the differences between triples, RDF, OWL and DL?
All this may seem a bit complicated. Let us try to clarify (a little bit) the relationship
between these concepts.7 
– Triple is a data format. A triplestore is a specialized database in which triples can

be stored and retrieved efficiently. 
– RDF is a logical model and languages (including SPARQL) suited to interpret

triples as pieces of knowledge independently of the underlying storage tech-
nology. Just like the relational model (including SQL) interprets the records
stored in the files of a database. 

– OWL can be seen as an extension of RDF based on the concept of ontology.8 
– Description logics is a mathematical theory derived from the FOL, that gives

RDF and OWL a sound formal interpretation. Just like the theoretical relational
model of E. F. Codd gives RDBMS a sound basis to interpret the result of any
query. In particular, DL provides mechanism to define inference rules.

5.5 Not all Key-value models are created equal

Some popular NoSQL DBMS are said to belong to the Key-value data manager
family. Once again, this name is completely misleading. Key-value DBMS propose
to organize data according to a low level model in which a unique key (the Key) is
associated to (generally) unstructured chunks of data (the Value). These data can be
retrieved by their Key value. Point!

select 'placed_by('''||O1.Entity||''','''||O3.Entity||''')'
from  ORDERS O1, ORDERS O2, ORDERS O3, ORDERS O4
where O1.Attribute = 'EType'  and O1.Value = 'CUSTORDER'
and   O2.Attribute = 'CustID' and O2.Entity = O1.Entity
and   O3.Attribute = 'EType'  and O3.Value = 'CUSTOMER'
and   O4.Attribute = 'CustID' and O4.Entity = O3.Entity
and   O2.Value = O4.Value;

7. A quite interesting discussion on this topic is available at https://stackoverflow.com/questions/
1740341/what-is-the-difference-between-rdf-and-owl.
8. An ontology is a structured collection of terms that describe the things of a certain application
domain in terms of entities, classes of entities and relationships between them. As compared with
databases, an ontology is, to some extent, similar to the conceptual schema of a database (though
an ontology may include instances as well).



19

Printed 5/6/23

Practically, The schema of any Key-value database could be simulated by a rela-
tional table:
create table RECORD(Key varchar(2048) not null primary key,
                    Value blob);

The structure and the meaning of the Key and Value parts of records are up to the
application. There is no query language. The data manipulation primitives are
reduced to get, put and delete. A Key-value database is just an abstract reposi-
tory in which data of arbitrary complexity can be stored and retrieved by a unique
key. The main role of these DBMS is the efficient management of large volumes of
data massively distributed and replicated among many data servers. Redis and
Berkeley DB are among the most popular.

Quite often, a Key-value data manager is the bottom layer of more sophisticated
manager, such as the NoSQL DBMS provided by Oracle, that comprises Berkeley
DB topped by a JSON upper layer.

5.6 The scripts

The scripts of the Key-value models are available in directory SQLfast/Scripts/
Case-Studies/Case_Schemaless. They can be run from main script Schemaless-
MAIN.sql (see Part 3)



20 Case study 5 • Schema-less databases - Part 2

Printed 5/6/23


