
Case study 4 4

Schema-less databases - Part 1

Objective: This document is the first of a series of three case studies
that explore alternative data models that organize the data in structures
that provide more flexibility than standard relational tables. We observe
that this flexibility makes it easier to dynamically modify the schema of
the database but, as an unfortunate consequence, the schema is less
expressive. In some of these data models, the schema is practically
devoid of any information, hence the name schema-less.
In this study, we explore two extreme data models. In the Universal
table model, according to which the data of all the source tables are
stored in a single table comprising the union of the columns of the
source tables. In the second model, called Column-oriented model,
each column of the source tables is implemented in an independent
table.
Scripts migrating the data of the ORDERS.db database to these models,
and conversely, are developed.
Keywords: non-relational data model, NoSQL, schema-less database,
universal table model, universal relation, column-oriented data model,
Cassandra, data migration, schema conversion

2 Case study 4 • Schema-less databases - Part 1

Printed 5/6/23

4.1 Introduction

The organization of data in columns and rows stored in tables, the so-called standard
relational model, is the most usual way to structure a database. Each table collects
the information on a set of real world entities (customers, products, employees,
movies, etc.). In a table, each entity is described by one and only one row and each
column stores a definite property of these entities. The name of the table is close to
the name of the entity set (CUSTOMER, EMPLOYEE) and the name of each column
evokes a property (Name, Address, City, Price, Skill).

However, this natural way to organize data is not the only one. When perfor-
mance and scalability become premium criteria, current relational database
managers may prove inflexible to cope with high volume of rapidly evolving and
growing data.

This is where the so-called NoSQL data managers begin to enter the scene. Their
architecture favors scalability (they allow data to grow several orders of magnitude
without administrative burden nor loss of performance), distribution, redundancy
and flexible data structures. However, there is a price to pay: practically no central-
ized control of data quality, no high-level query language, no standard data
structures and interface, no strong transactions. Most often these databases have no
expressive data structures, in such a way that data integrity, quality control,
semantic validation and the like are the responsibility of the application programs.

This document and the next two ones are a short but practical introduction to
some of these alternative data models. Instead of working with native NoSQL
DBMS (which one to choose among the nearly hundred of them?), we will express
these models in relational data structures, develop scripts to migrate source tables
(the four tables of database ORDERS.db) into these new models (and back) and
write some queries for these data.

A last word: the title of these case studies is standard but misleading. Each data-
base, whatever its model, has a schema but this schema can be more or less abstract
and generic. Schema-less qualifies databases the structure of which tends to be
simplistic, unspecific and merely technical. In other words, the names of objects of
the schema (tables and columns) no longer denote entities and properties of the real
world.1

4.2 The Universal table model

This first alternative data model organizes the data of a database in a single table
comprising one not null column (the table primary key) and a series of nullable

1. “The absence of a schema has some flexibility advantages, although for querying the data, the
absence of a schema presents some challenges to people accustomed to a classic RDBMS. “–Iran
Hutchinson. http://www.odbms.org/blog/2014/01/big-data-three-questions-to-intersystems/

3

Printed 5/6/23

columns. Each entity of the application domain (i.e., the part of the real world about
which we want to record information) is described by a row where the relevant
columns have been assigned a value while all the other ones are set to null. If
needed, an additional column, let us call it EType, can be added to identify the type
of the entity. These rows are assigned an abstract technical Id that act as a global
primary key, independently of the primary keys of the source tables.

Script 4.1 shows an example of creation query for this table, called DATA. The
abstract Id is called Entity since it uniquely denotes each entity of the application
domain, whatever its type.

Script 4.1 - Table DATA collecting rows of different patterns (from the standard
ORDERS database) in a single table.

4.2.1 Generating the Universal table data from source tables
Script 4.2 migrates the data of database ORDERS and Figure 4.1 shows the contents
of table DATA. The fact that most columns are set to null is less of a problem than it
seems to be: in many DBMS implementations, a null value just costs one bit.

When possible, the same column is used to represent different roles according to
the entity described. It is the case for CustID, OrdID and ProdID, that each appear in
two entity types, once as a primary key and once as a foreign key.

4.2.2 From the Universal table back to the standard tables
Recovering source data from universal table DATA is straightforward. Script 4.3
declares a set of views that present the data according to the standard source tables.

create table DATA(
 Entity integer not null primary key autoincrement,
 EType char(18) not null,
 CustID char(10),
 Name char(32),
 Address char(60),
 City char(30),
 Cat char(2),
 Account decimal(9,2),
 ProdID char(15),
 Description char(60),
 Price integer,
 QonHand integer,
 OrdID char(12),
 DateOrd date,
 Qord integer);

4 Case study 4 • Schema-less databases - Part 1

Printed 5/6/23

Script 4.2 - Migration of the ORDERS database to table DATA

Script 4.3 - Rebuilding the tables of the ORDERS database through views defined on
table DATA

4.2.3 Application
As an application example, Customer entities and their associated order entities can
be retrieved efficiently in one, join-less, select operation (Script 4.4). The result of
these queries is shown in Figure 4.2. At the physical level, this model allows indexes
to be defined on columns that appear in different entity types, providing a function
somewhat similar to Oracle clusters.

Script 4.4 - Extracting data of customer C400 and his orders in join-less query (top)
and its join-based equivalent

insert into DATA(EType,CustID,Name,Address,City,Cat,Account)
select 'CUST',CustID,Name,Address,City,Cat,Account from CUSTOMER;

insert into DATA(EType,ProdID,Description,Price,QonHand)
select 'PROD',ProdID,Description,Price,QonHand from PRODUCT;

insert into DATA(EType,OrdID,CustID,DateOrd)
select 'ORD',OrdID,CustID,DateOrd from CUSTORDER;

insert into DATA(EType,OrdID,ProdID,Qord)
select 'DET',OrdID,ProdID,Qord from DETAIL;

create view CUSTOMER as
select CustID,Name,Address,City,Cat,Account
from DATA where EType = 'CUST';

create view CUSTORDER(OrdID,CustID,DateOrd) as
select OrdID,CustID,DateOrd
from DATA where EType = 'ORD';
. . .

select CustID,Name,Address,City,OrdID,DatOrd
from DATA
where EType in ('CUST','ORD')
and CustID = 'C400';

select CustID,Name,Address,City,OrdID,DatOrd
from DATA C, DATA O
where C.EType = 'CUST'
and O.EType = 'ORD'
and C.CustID = 'C400'
and O.CustID = C.CustID;

5

Printed 5/6/23

+
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
+

|

E
t
y

|

E
T
y
p
e

|

C
u
s
t
I
D

|

N
a
m
e

|

A
d
d
r
e
s
s

|

C
i
t
y

|

C
a
t

|

A
c
c

|

O
r
d
I
D

|

D
a
t
e
O
r
d

|

Q
o
r
d

|

P
r
o
d
I
D

|

D
e
s
c
r
i
p
t
i
o
n

|

P
r
i
c
e

|

Q
o
n
H

|

+
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
+

|

1

|

C
U
S
T

|

B
1
1
2

|

H
A
N
S
E
N
N
E

|

2
3
,

r
.

D
u
m
o
n
t

|

P
o
i
t
i
e
r
s

|

C
1

|

1
2
5
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

2

|

C
U
S
T

|

C
1
2
3

|

M
E
R
C
I
E
R

|

2
5
,

r
.

L
e
m
a
î
t
r
e

|

N
a
m
u
r

|

C
1

|

-
2
3
0
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

3

|

C
U
S
T

|

B
3
3
2

|

M
O
N
T
I

|

1
1
2
,

r
.

N
e
u
v
e

|

G
e
n
è
v
e

|

B
2

|

0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

4

|

C
U
S
T

|

F
0
1
0

|

T
O
U
S
S
A
I
N
T

|

5
,

r
.

G
o
d
e
f
r
o
i
d

|

P
o
i
t
i
e
r
s

|

C
1

|

0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

5

|

C
U
S
T

|

K
1
1
1

|

V
A
N
B
I
S
T

|

1
8
0
,

r
.

F
l
o
r
i
m
o
n
t

|

L
i
l
l
e

|

B
1

|

7
2
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

6

|

C
U
S
T

|

S
1
2
7

|

V
A
N
D
E
R
K
A

|

3
,

a
v
.

d
e
s

R
o
s
e
s

|

N
a
m
u
r

|

C
1

|

-
4
5
8
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

7

|

C
U
S
T

|

B
5
1
2

|

G
I
L
L
E
T

|

1
4
,

r
.

d
e

l
'
E
t
é

|

T
o
u
l
o
u
s
e

|

B
1

|

-
8
7
0
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

8

|

C
U
S
T

|

B
0
6
2

|

G
O
F
F
I
N

|

7
2
,

r
.

d
e

l
a

G
a
r
e

|

N
a
m
u
r

|

B
2

|

-
3
2
0
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

9

|

C
U
S
T

|

C
4
0
0

|

F
E
R
A
R
D

|

6
5
,

r
.

d
u

T
e
r
t
r
e

|

P
o
i
t
i
e
r
s

|

B
2

|

3
5
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

1
0

|

C
U
S
T

|

C
0
0
3

|

A
V
R
O
N

|

8
,

c
h
.

d
e

l
a

C
u
r
e

|

T
o
u
l
o
u
s
e

|

B
1

|

-
1
7
0
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

1
1

|

C
U
S
T

|

K
7
2
9

|

N
E
U
M
A
N

|

4
0
,

r
.

B
r
a
n
s
a
r
t

|

T
o
u
l
o
u
s
e

|

-
-

|

0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

1
2

|

C
U
S
T

|

F
0
1
1

|

P
O
N
C
E
L
E
T

|

1
7
,

C
l
ô
s

d
e
s

E
r
a
b
l
e
s

|

T
o
u
l
o
u
s
e

|

B
2

|

0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

1
3

|

C
U
S
T

|

L
4
2
2

|

F
R
A
N
C
K

|

6
0
,

r
.

d
e

W
é
p
i
o
n

|

N
a
m
u
r

|

C
1

|

0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

1
4

|

C
U
S
T

|

S
7
1
2

|

G
U
I
L
L
A
U
M
E

|

1
4
a
,

c
h
.

d
e
s

R
o
s
e
s

|

P
a
r
i
s

|

B
1

|

0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

1
5

|

C
U
S
T

|

D
0
6
3

|

M
E
R
C
I
E
R

|

2
0
1
,

b
v
d

d
u

N
o
r
d

|

T
o
u
l
o
u
s
e

|

-
-

|

-
2
2
5
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

1
6

|

C
U
S
T

|

F
4
0
0

|

J
A
C
O
B

|

7
8
,

c
h
.

d
u

M
o
u
l
i
n

|

B
r
u
x
e
l
l
e
s

|

C
2

|

0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

1
7

|

O
R
D

|

K
1
1
1

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
7
8

|

2
0
1
3
-
1
2
-
2
1

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

1
8

|

O
R
D

|

C
4
0
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
7
9

|

2
0
1
3
-
1
2
-
2
2

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

1
9

|

O
R
D

|

S
1
2
7

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
2

|

2
0
1
3
-
1
2
-
2
3

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

2
0

|

O
R
D

|

C
4
0
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
4

|

2
0
1
3
-
1
2
-
2
3

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

2
1

|

O
R
D

|

F
0
1
1

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
5

|

2
0
1
4
-
0
1
-
0
2

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

2
2

|

O
R
D

|

C
4
0
0

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
6

|

2
0
1
4
-
0
1
-
0
2

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

2
3

|

O
R
D

|

B
5
1
2

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
8

|

2
0
1
4
-
0
1
-
0
3

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

|

2
4

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
7
8

|

-
-

|

2
5

|

C
S
4
6
4

|

-
-

|

-
-

|

-
-

|

|

2
5

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
7
9

|

-
-

|

2
0

|

P
A
6
0

|

-
-

|

-
-

|

-
-

|

|

2
6

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
7
9

|

-
-

|

6
0

|

C
S
2
6
2

|

-
-

|

-
-

|

-
-

|

|

2
7

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
2

|

-
-

|

3
0

|

P
A
6
0

|

-
-

|

-
-

|

-
-

|

|

2
8

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
4

|

-
-

|

1
2
0

|

C
S
4
6
4

|

-
-

|

-
-

|

-
-

|

|

2
9

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
4

|

-
-

|

2
0

|

P
A
4
5

|

-
-

|

-
-

|

-
-

|

|

3
0

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
5

|

-
-

|

1
5

|

P
A
6
0

|

-
-

|

-
-

|

-
-

|

|

3
1

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
5

|

-
-

|

6
0
0

|

P
S
2
2
2

|

-
-

|

-
-

|

-
-

|

|

3
2

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
5

|

-
-

|

2
6
0

|

C
S
4
6
4

|

-
-

|

-
-

|

-
-

|

|

3
3

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
6

|

-
-

|

3

|

P
A
4
5

|

-
-

|

-
-

|

-
-

|

|

3
4

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
8

|

-
-

|

7
0

|

P
A
6
0

|

-
-

|

-
-

|

-
-

|

|

3
5

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
8

|

-
-

|

9
2

|

P
H
2
2
2

|

-
-

|

-
-

|

-
-

|

|

3
6

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
8

|

-
-

|

1
8
0

|

C
S
4
6
4

|

-
-

|

-
-

|

-
-

|

|

3
7

|

D
E
T

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

3
0
1
8
8

|

-
-

|

2
2

|

P
A
4
5

|

-
-

|

-
-

|

-
-

|

|

3
8

|

P
R
O
D

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

C
S
2
6
2

|

R
A
F
T
.

P
I
N
E

2
0
0
x
6
x
2

|

7
5

|

4
5

|

|

3
9

|

P
R
O
D

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

C
S
2
6
4

|

R
A
F
T
.

P
I
N
E

2
0
0
x
6
x
4

|

1
2
0

|

2
6
9
0

|

|

4
0

|

P
R
O
D

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

C
S
4
6
4

|

R
A
F
T
.

P
I
N
E

4
0
0
x
6
x
4

|

2
2
0

|

4
5
0

|

|

4
1

|

P
R
O
D

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

P
A
4
5

|

N
A
I
L
S

S
T
E
E
L

4
5

(
1
K
)

|

1
0
5

|

5
8
0

|

|

4
2

|

P
R
O
D

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

P
A
6
0

|

N
A
I
L
S

S
T
E
E
L

6
0

(
1
K
)

|

9
5

|

1
3
4

|

|

4
3

|

P
R
O
D

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

P
H
2
2
2

|

P
L
.

B
E
E
C
H

2
0
0
x
2
0
x
2

|

2
3
0

|

7
8
2

|

|

4
4

|

P
R
O
D

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

-
-

|

P
S
2
2
2

|

P
L
.

P
I
N
E

2
0
0
x
2
0
x
2

|

1
8
5

|

1
2
2
0

|

+
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
+
-
-
-
-
-
-
+

Fi
gu

re
 4

.1
 -

C
on

te
nt

s
of

 th
e

U
ni

ve
rs

al
 ta

bl
e

as
so

ci
at

ed
 to

 th
e

O
R

D
ER

S
da

ta
ba

se

6 Case study 4 • Schema-less databases - Part 1

Printed 5/6/23

+--------+--------+------------------+----------+-------+------------+
| CustID | Name | Address | City | OrdID | DateOrd |
+--------+--------+------------------+----------+-------+------------+
C400	FERARD	65, r. du Tertre	Poitiers	--	--
C400	--	--	--	30179	2013-12-22
C400	--	--	--	30184	2013-12-23
C400	--	--	--	30186	2014-01-02
+--------+--------+------------------+----------+-------+------------+					
+--------+--------+------------------+----------+-------+------------+					
CustID	Name	Address	City	OrdID	DateOrd
+--------+--------+------------------+----------+-------+------------+					
C400	FERARD	65, r. du Tertre	Poitiers	30179	2013-12-22
C400	FERARD	65, r. du Tertre	Poitiers	30184	2013-12-23
C400	FERARD	65, r. du Tertre	Poitiers	30186	2014-01-02
+--------+--------+------------------+----------+-------+------------+

Figure 4.2 - Result of the execution of queries 4.4

4.2.4 Origin of the Universal table model
This data model is derived from the concept of Universal relation of the relational
theory, though the two constructs are quite different. The Universal table is the
union of source tables while the Universal relation would be obtained by outer joins
of the source tables. One of the main goal of the Universal relation is to offer a
simpler relational algebra, devoid of the join operator.

4.2.5 Comments
This model brings much flexibility for schema evolution. For example,
• Since all columns are nullable, new columns can be added without impact on the

contents of the table,
• Each entity can be structured independently of the others of its type (e.g., a defi-

nite customer entity can be assigned a value of column DESCRIPTION),
• New entity types can be added without structural modification, provided the

required columns are available.

Such loosely structured data model is appropriate when the nature and the structure
of entities are rapidly evolving.

However, it does not provide an easy support for the native SQL integrity
constraints (unique keys, foreign keys, not null column). First conclusion: more
flexibility implies lesser expressivity of the schema. More on this later.

The scripts of this section are available in file Schemaless1-Universal.sql in
directory Case_Schemaless.

7

Printed 5/6/23

4.3 Column-oriented data model

This model represents each property by a specific table and can be considered the
opposite of the Universal table model. As compared to the four source tables of
database ORDERS.db, this model will include one table (called column-table) per
source column. For instance, the data of source table CUSTOMER are distributed
among five column-tables, each comprising the primary key (CustID) plus one
source column, respectively for Name, Address, City, Cat, Account values. Primary
key CustID is common to these tables to allow the reconstruction of source table
CUSTOMER through joins. The second column is simply named Value, so that all
the column-tables (but one!) deriving from a source table have the same schema.
Script 4.5 creates the tables for storing the data of database ORDERS.db.

Script 4.5 - Creating column-tables

4.3.1 Generating the Column-oriented data from the source
tables

Script 4.6 migrates the data from the source database. Figure 4.3 shows the contents
of tables CUST_NAME and CUST_ADDRESS.

We observe that we have not created a specific table for the primary key of the
source tables. Indeed, its values are stored in each of the column-table. This struc-
ture is valid provided (1) the source table comprises at least one column in addition
to the primary key and (2) null values are also represented. If condition (1) is not
satisfied, then the source table can be taken as a degenerated column-table.

create table CUST_NAME(
 CustID char(10) not null primary key,
 Value varchar(32) not null);
create table CUST_ADDRESS(
 CustID char(10) not null primary key,
 Value char(60) not null);
create table CUST_CITY(
 CustID char(10) not null primary key,
 Value char(30) not null);
...

create table ORD_CUSTID(
 OrdID char(12) not null primary key,
 Value char(10) not null);
create table ORD_DATEORD(
 OrdID char(10) not null primary key,
 Value date not null);
...

8 Case study 4 • Schema-less databases - Part 1

Printed 5/6/23

Script 4.6 - Loading column-tables

+--------+-----------+ +--------+----------------------+
| CustID | Value | | CustID | Value |
+--------+-----------+ +--------+----------------------+
B112	HANSENNE		B112	23, r. Dumont
C123	MERCIER		C123	25, r. Lemaître
B332	MONTI		B332	112, r. Neuve
F010	TOUSSAINT		F010	5, r. Godefroid
K111	VANBIST		K111	180, r. Florimont
S127	VANDERKA		S127	3, av. des Roses
B512	GILLET		B512	14, r. de l'Eté
B062	GOFFIN		B062	72, r. de la Gare
C400	FERARD		C400	65, r. du Tertre
...
+--------+-----------+ +--------+----------------------+

Figure 4.3 - Contents of column-tables CUST_NAME and CUST_ADDRESS

We observe that source table DETAIL is transformed into a column-table the schema
of which is different from that of the other column-tables. Indeed, this table has a
composite primary key and only one column in addition to its primary key. There-
fore, the source table and the unique column-table are exactly the same, bar some of
their column names.

4.3.2 From the Column-oriented tables back to the source tables
Script 4.7 recovers source table CUSTOMER by joining the tables that represent its
columns.

insert into CUST_NAME(CustID,Value)
 select CustID,Name from CUSTOMER;
insert into CUST_ADDRESS(CustID,Value)
 select CustID,Address from CUSTOMER;
insert into CUST_CITY(CustID,Value)
 select CustID,City from CUSTOMER;
...

insert into ORD_CUSTID(OrdID,Value)
 select OrdID,CustID from CUSTORDER;
insert into ORD_DATEORD(OrdID,Value)
 select OrdID,DateOrd from CUSTORDER;

insert into DET_QORD(OrdID,ProdID,Value)
 select OrdID,ProdID,Qord from DETAIL;

insert into PROD_DESCR(ProdID,Value)
 select ProdID,Description from PRODUCT;
insert into PROD_PRICE(ProdID,Value)
 select ProdID,Price from PRODUCT;
...

9

Printed 5/6/23

Script 4.7 - Rebuilding source table CUSTOMER from column tables

4.3.3 Column-oriented model with abstract primary keys
In the column-tables, column CustID is intended to denote entities. This technique is
fine for CUSTOMER table for two reasons:

– the customer Ids are short and meaningless
– the primary key of the table comprises one column only.

Performance problems may arise for large primary keys, which are duplicated in
each column-table. In addition, the primary indexes will also be quite large and
therefore will entail lookup time penalties.

Composite primary keys are more tricky to cope with. In such cases, column
tables are made up of more than two columns: at least two for the primary key +
one. So, there is no common table format, which makes the model no longer
uniform.

Hence the idea to denote entities with abstract Ids, as we did in table DATA of the
Universal table model (Script 4.1). This way, we can define a column-table for each
source column, be it a component of a primary key or not, making the representation
quite uniform (Script 4.8). We observe that table CUST_CUSTID has a spacial
structure: Column Entity is declared auto increment and a unique predicate is stated
on column Value.

To load the column-tables, we proceed in two steps. First, we load the table
derived from the primary key in order to generate the abstract Ids:

insert into CUST_CUSTID(Value)
 select CUSTID from CUSTOMER order by CUSTID;

Then, we load the other column-tables with the abstract Ids that have been produced:

insert into CUST_NAME(Entity,Value)
 select Entity,Name
 from CUST_CUSTID I, CUSTOMER C where I.Value = C.CustID;

select C1.CustID,C1.Value as Name,C2.Value as Address,
 C3.Value as City,C4.Value as Cat,C5.Value as Account
from CUST_NAME C1,CUST_ADDRESS C2,
 CUST_CITY C3,CUST_CAT C4,CUST_ACCOUNT C5
where C2.CustID = C1.CustID
and C3.CustID = C1.CustID
and C4.CustID = C1.CustID
and C5.CustID = C1.CustID;

10 Case study 4 • Schema-less databases - Part 1

Printed 5/6/23

Script 4.8 - Creating column-tables based on abstract primary keys

The case of composite primary keys will be tackled in a slightly different way. We
create a special dictionary table the role of which is to generate the abstract Ids and
to map the primary key composite values to these abstract values. For table DETAIL,
it is declared as follows:

create temp table DET_PK(
 Entity integer not null primary key autoincrement,
 Value1 char(12),
 Value2 char(15));

The dictionary table is filled by the primary key values of DETAIL:

insert into DET_PK(Value1,Value2)
 select OrdID,ProdID from DETAIL order by OrdID,ProdID;

The column-tables are then loaded with the abstract Ids that have been produced:

insert into DET_ORDID(Entity,Value)
 select Entity,OrdID from DET_PK K, DETAIL D
 where K.Value1 = D.OrdID and K.Value2 = D.ProdID;

create table CUST_CUSTID(
 Entity integer not null primary key autoincrement,
 Value char(10) not null unique);
create table CUST_NAME(
 Entity integer not null primary key,
 Value char(32) not null);
create table CUST_ADDRESS(
 Entity integer not null primary key,
 Value char(60) not null);
create table CUST_CITY(
 CustID integer not null primary key,
 Value char(30) not null);
...
create table DET_PK(
 Entity integer not null primary key autoincrement,
 Value1 char(12),
 Value2 char(15));
create table DET_ORDID(
 Entity integer not null,
 Value char(12) not null);
create table DET_PRODID(
 Entity integer not null,
 Value char(15) not null);
create table DET_QORD(
 Entity integer not null,
 Value integer not null);

11

Printed 5/6/23

The uniqueness property of the source primary key of table CUSTOMER is ensured
by the unique predicate in column-table CUST_CUSTID.

Unfortunately, the expression of composite primary keys is no longer straightfor-
ward, since they hold on joins of column tables. The following query lists the
primary key values that are not unique among the column-tables of DETAIL:

select O.Value as OrdID,P.Value as ProdID,count(*) as Duplicate
from DET_ORDID O,DET_PRODID P
where O.Value = P.Value
group by O.Value,P.Value
having Duplicate > 1;

4.3.4 About performance
We have measured the time needed to load the column-tables and to rebuild the
source table for a CUSTOMER table containing 32,768 rows (= 32K rows). These
figures are collected in Figure 4.4 (times in ms.). If the first technique, based on
source primary keys, is a bit faster for the generation of column-tables, the second
technique, based on abstract Ids, appears to be four times faster for rebuilding the
source table rows. These times are linear wrt the table size: doubling the number of
rows doubles the execution times.

Figure 4.4 - Execution time of the main conversion processes for the two approaches

4.3.5 Not all Column-oriented models are created equal
The term column-oriented also names a family of so-called NoSQL data managers,
the main representative of which certainly is Cassandra. In the latter case, this name
is misleading. The original data model of Cassandra is particularly convoluted,
using seemingly new concepts under proprietary vocabulary. Actually, this historical
model is being abandoned and replaced by an alternative model, CQL, made up of
concept like keyspace (= database), type, table, column, primary key, index, trigger as
well as operators select, insert, update and delete, that is, ironically, ... a subset of
SQL!

Entity Id Load time Rebuild time

primary key 279 167

abstract entity id 318 42

12 Case study 4 • Schema-less databases - Part 1

Printed 5/6/23

4.3.6 Comments
This model may bring several advantages. First, the evaluation of a query only gets
access to the columns that are relevant and to no other ones. This reduces the volume
of data read from the external memory. This is particularly important for tables that
comprise many, possibly large, columns. Another advantage is that, by storing the
columns on different devices, their access can be performed in parallel, thus
reducing response time.

On the other hand, the expression of some common integrity constraints may
prove complex.

The way null values are represented is worth a short discussion. The first tech-
nique, that has been chosen in this discussion, consists in inserting, for each source
row, a row in each column-table, be its value null or not null. According to another
way, null values are represented by a missing row in the column table. Both
approaches are consistent but when we rebuild the source table, or a part of it, the
first representation will need inner joins while the second one will require outer
joins.

The scripts of the column-oriented model are available in directory SQLfast/
Scripts/Case-Studies/Case_Schemaless. They can be run from main script Sche-
maless-MAIN.sql (see Part 3).

A discussion and links to column-oriented database managers can be found in
reference: http://en.wikipedia.org/wiki/Column-oriented_DBMS.

