
Case study 3 3

Interactive SQL interpreters

Objective: An interactive SQL interpreter is this kind of graphical
interface through which one enters an SQL query and that displays the
result of its execution in a text window. They are used, for instance, to
learn SQL or to test and tune SQL queries that are to be integrated in
application programs. There are many of them available for free on the
internet or included in relational DBMS. In this study, we will build,
step by step, our own SQL interpreter by implementing the functions
and features we want to use, notably (but not exclusively) to train
students in writing SQL queries.
Starting from a very tiny interpreter (just 7-character long!) we will
build a series of more comprehensive and versatile versions, up to the
last one, that will be able, not only to execute the queries submitted by
the user, but also to evaluate their correctness.
All these versions are available as two ready to run applications.
Keywords: SQL interpreter, GUI, learning SQL, query evaluation,
multiset, set operator, base64

2 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

3.1 Introduction

The graphical interface of the SQLfast environment is particularly fit for experi-
menting with the SQL language: we type a query in the main window, then we click
on button Run and finally we examine the result in the output window. That is fairly
convenient to learn the concepts of databases and SQL.

This interface is quite general but may be felt too complex or, on the contrary, too
simplistic, as a support to SQL training. So, why not develop our own graphical
interface that meets our specific needs? For example we would like, among others:

– to integrate the query and output text fields into a single window
– to discard all these useless buttons and menu items that clutter the interface
– to add new functions specifically devoted to SQL learning
– to customize the layout of the interface
– to display more user-friendly error messages
– to integrate tutorial and exercise modules
– and (let us have a dream) to automatically evaluate student’s answers to the

exercises.

The goal of this study is to explore some techniques to implement these wishes into
what we will call Interactive SQL interpreters.

3.2 The smallest interactive interpreter in the world!

For this first try, let us work with the Basic interface (check the top right label of the
main window). We open database ORDERS.db, we type the statements of Script 3.1
then we click on button Run. The first statement invites the user to type an SQL
query and stores it in variable Query. The contents of this variable forms the second
statement, which is then executed. The result appears in the standard output window
(Figure 3.1).

Script 3.1 - An elementary interactive SQL interpreter

Note (useless, just for fun)
This script can even be made more compact (as low as 7 characters, space and
semi-colons excluded) by reducing the name of the variable to a single letter:

ask Q;
Q;

ask Query;
$Query$;

3

Printed 5/6/23

Figure 3.1 - The elementary query entry box and the output window

Extending this script by making it iterative is quite easy (Script 3.2). The query entry
box opens repeatedly, until the user has no query to execute any more and clicks on
button Cancel.

Script 3.2 - An elementary interactive SQL interpreter

Now we will learn to develop more sophisticated interpreters.
Though quite operational, this first trial is not particularly elegant nor easy to use

for any serious experimentation.
First, queries are limited to one short line. Fine for some elementary queries from

beginners, but submitting more complex queries will be awkward. Let us replace the
data entry box by a text entry box (Figure 3.2). We just replace statement ask with
askText (Script 3.3).

while (True);
 ask Query;
 if ('$DIALOGbutton$' = 'Cancel') exit;
 $Query$;
endwhile;

4 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

Figure 3.2 - Getting the query to submit through a text entry box

Script 3.3 - Entering larger queries in a text box

Now, let us integrate the query and output windows. To do so, we abandon the stan-
dard output window and we add a new text field in the query entry box. The result
set of the query is sent in variable result by redirecting the output channel to this
variable:
outputAppend result.var;

The contents of result is then shown by statement showText. Both text fields are
assembled vertically by an askCombo statement:
askCombo [askText Query]|[showText result];

The code of this version is shown in Script 3.4.

Script 3.4 - Integrating query and output text boxes

while (True):
 askText Query;
 if ('$DIALOGbutton$' = 'Cancel') exit;
 $Query$;
endwhile;

set result = ;
outputAppend result.var;
while (True);
 askCombo [askText Query]|[showText result];
 if ('$DIALOGbutton$' = 'Cancel') exit;
 $Query$;
endwhile;

5

Printed 5/6/23

3.3 A simple but realistic SQL interpreter

It is time to leave these first experiments for a more professional approach.
First, we adjust the size of the text fields. Eight lines for the query field and

twenty four lines for the result field seem fairly comfortable. In addition, word
wrapping in the query field is what we expect (long lines are always visible) while
it would spoil the presentation of wide result sets in the result field. Hence the
different parameter settings for these fields:
[askText Query = [/w1/y8]]|[showText result = [/w0/y24]]

Now, let us address the question of the contents displayed in the text fields. We
decide that the query that has been executed remains in the query field, so that the
user can modify it for further execution, for example to fix errors or to run variants.
We replace statement askText by askText-u, that displays the contents of vari-
able Query for modification (-u for update).

As to the contents of the result field, we find it useful to copy the query before
execution (write-ab $Query$). This will produce a nice report in which each
query is followed by the result set of its execution.

Finally, the layout in which users enter their queries in the query field is not
always elegant. So, we rewrite it both in the query and the result fields. For this, we
use the pretty print function of the LStr library:

function Query = LStr:PrettyPrint {$Query$};

If this query is typed in a single line in the query field:

select CustID,Name,Address,Cat from CUSTOMER where City =
'Toulouse'

then it is rewritten in both text fields as:

select CustID,Name,Address,Cat
from CUSTOMER
where City = 'Toulouse'

These features are translated in Script 3.5. Figure 3.3 shows the state of the SQL
interpreter when the query mentioned above has been entered and executed, then
executed again for new value 'Paris'.

3.4 Error management
If an erroneous SQL query is typed in (e.g., select * from KUSTOMER), as is
natural from SQL learners, an error message will pop up, like that of Figure 3.4.

6 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

Script 3.5 - At last, a realistic SQL interpreter

Figure 3.3 - State of the SQL interpreter of Script 3.5

set Query,result = , ;
outputAppend result.var;
while (True);
 askCombo [askText-u Query = [/w1/y8]]
 |[showText result = [/w0/y24]];
 if ('$DIALOGbutton$' = 'Cancel') exit;
 function Query = LStr:PrettyPrint {$Query$};
 write-ab $Query$;
 $Query$;
endwhile;

7

Printed 5/6/23

This standard message is quite detailed, but it refers to the script we have executed
and not to the operation the student wanted to carry out. Message "no such table:
KUSTOMER" is fine, but the rest of the text will just confuse the student.

Figure 3.4 - Not exactly the kind of message a novice user would like to read!

First, we disable the standard error management, letting the script continue its
execution in case of error:

onError continue;

Then, we can examine the error messages returned by the SQLfast engine through
three system variables:

– Error is a simple indicator telling whether the last statement has been success-
fully executed (Error = 0) or not (Error = 1)

– SQLdiag provides a concise diagnostic on the execution of the last query: 'OK'
if everything went fine, 'NONE' if no row was found, 'ID' for a uniqueness error,
etc.

– EXTENDEDdiag gives more detail on the error. Generally, it includes the nature
of the query and the error message provided by the SQL engine.

We agree on two successful messages, namely 'OK' and 'NONE', all the other ones
being considered as unsuccessful execution. Let us replace the simple execution
statement

$Query$;

by this sequence
onError continue;
 $Query$;
 if ($Error$) write $SQLdiag$; $EXTENDEDdiag$;
onError stop;

Now the message is much sober:
SCHEMA; select: no such table: KUSTOMER

The contents of these two variables provide us with the necessary information to
build a more student-friendly error message, as shown in Figure 3.5.

8 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

Figure 3.5 - A simpler and more informative error message

To cope with the different errors that may occur in the execution of all SQL queries,
it is best to create a specific procedure that identifies the error and that creates the
appropriate error message. Now, the modification of the main script looks like this:

onError continue;
 $Query$;
 if ($Error$) execSQL SQL-ErrorProcessing.sql;
onError stop;

The code of script ErrorProcessing.sql could be that of Script 3.6.

Script 3.6 - The procedure processing SQL errors

compute verb = lower(item('§Query§',1,' '));

if ('§verb§' not in ('select','insert','update','delete'))
 set verb = unknown;

goto $verb$;

label select;
 compute mess = '*** $SQLdiag$ error in "$verb$"'
 ||'" query:@n*** '
 ||item('$EXTENDEDdiag$',2,':')
 ||item('$EXTENDEDdiag$',3,':')||'.';
 goto Display;

label delete;
 ...
 goto Display;
...

label unknown
 set mess = *** Unknown operation "$verb$". Should be:
 @n*** "select", "insert", "update" or "delete".;

label Display;
 write $mess$;

9

Printed 5/6/23

3.5 Adding information fields

First time users could be puzzled by the complexity of the dialogue box! Let us add
short informative messages to help them identify the different components of the
dialogue box (Script 3.7).

Script 3.7 - Adding information messages

3.6 Adding functions

To make the life of students easier and more comfortable, we will add some func-
tions to the interface. First, copying the query in the result field will be made an
option. Same idea for appending the result of the next query to the text already
written in the result field. So, we create two buttons:

– Show query: if checked, the next queries will be copied in the result field
before each of their result set.

– Preserve history: if checked, the query just executed and its result set (or diag-
nostic) will be appended to the contents of the result field (hence the term
history). Otherwise, this material will replace the current contents.

It would be nice too to add a short tutorial to help first time students to start using
the interpreter. We add a button (Show help) that, when checked, opens a help docu-
ment the next time button OK is clicked on. If unchecked, this document does not
appear.

A fourth function will allow students to ask for a report of their session,
comprising the trace of their activities. This report is the contents of the result field
and will be written in a text file on exit of the interpreter. When checked, button
Save history on exit automatically activates function Preserve history.

Now, the dialogue box creation statement looks like Script 3.8. The complete
script is shown in Script 3.9. It produces the interface of Figure 3.6.

Two comments on this script:
– Saving the history depends on the value of indicator S on exit. However, this

value will be not be updated when the box is closed with button Cancel. There-

...
askCombo [/bInteractive SQL interpreter.
 Enter an SQL query then click on OK.]
 [askText-u Query = [/w1/y8/bMy SQL query]]
 |[showText result = [/w0/y24/bThe result of my query]];
...

10 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

fore, button Save history on exit must be checked before some queries are
submitted, which is fairly natural.1

– The save file is given a standard name like SQL-Save-2017-10-28_16-08-32.txt.
This name is built from time registers date and time. Since the time format
includes semi-colons (according the ISO format), the latter are converted into
simple dashes.

Script 3.8 - Four function check buttons are added

Script 3.9 - Interactive SQL interpreter - Final version

1. In other words, checking this button just before leaving the interpreter is useless!

askCombo [/bInteractive SQL ...]
 [selectMany-u S = Save history on exit]
|[askText-u Query = [/w1/y8/bMy SQL query]]
|[selectMany-u Q,P,H = Show query||Preserve history||Show help]
|[showText result = [/w0/y24/bThe result of my query]];

outputAppend result.var;
set Query,result,log = ,,;
set S,Q,P,H = 0,1,1,0;
while (True);
 askCombo ...;
 if ('$DIALOGbutton$' = 'Cancel') exit;
 if (S) set P = 1;
 function Query = LStr:PrettyPrint {$Query$};
 if (not P) set result = ;
 if (Q) write-ab $Query$;
 onError continue;
 $Query$;
 if ($Error$) execSQL _SQL-ErrorProcessing.sql;
 onError stop;
 if (H) displayHelp SQL-interpreter.tuto;
 if (not H) closeHelp;
endwhile;

if (S);
 compute tim = '$date$'||'_'
 ||substr(replace('$time$',':','-'),1,8);
 outputOpen SQL-Save-tim.txt;
 write $result$;
endif;

11

Printed 5/6/23

Figure 3.6 - Interface of the final version of the SQL interpreter

3.7 SQL interpreters as training support

One of the most common uses of SQL interpreters is to support SQL learning. The
training scenario suggested by the SQL interpreter we have developed is fairly
simple:

12 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

– the student reads the text of an exercise in some paper or electronic document
(pdf or web page for instance), generally as a query expressed in plain
language,

– the student enters the SQL query that answers it,
– the interpreter checks the syntactic validity of the SQL query,
– the interpreter executes the SQL query
– if the query is syntactically correct the interpreter displays its result set,
– otherwise it displays an error message.

If, as an answer to this exercise text:

what are the cities in which at least two customers live?

the student enters this erroneous SQL query:
 select City from CUSTOMER where CustID >= '2'

the interpreter will find it syntactically correct and will display its result set, be it
correct or not. The interpreter is happy with this answer, ... and so will be the
student!

3.8 Semantic correctness of a query

The problem we put in light is the semantic correctness of the student’s answer: does
the SQL query exactly translates in the (formal) SQL language the intension of the
(informal) query of the exercise?

A first solution that could come in mind would be to store in an exercise database
both the text of each exercise and the expected SQL query that translates it. So, we
could compare the query of the student with this reference query.

Unfortunately, this naive approach does not work (at all). This problem have
proved very difficult to solve for two main reasons. First, natural languages are
ambiguous. As every teacher has experimented, whatever the care with which one
writes the text of an exercise, there will almost always be an student who will give it
a plausible but unexpected interpretation. Secondly, even when we agree on the
meaning of an exercise text, the richness and flexibility of the SQL language allows
a wide variety of equivalent SQL queries to be written.

Let us show it through the following example, that seems quite simple and
unambiguous:

which are the orders placed in 2017?

What does exactly mean expression "which are the orders"? Does it mean "the value
of column CustID of table CUSTORDER"? or "the values of all the columns of this
table"? Can we add the name, address and city of the customers who placed the
orders? Can we add the total amount of each order? Can we sort the result set?

13

Printed 5/6/23

Expression "placed in 2017" is unambiguous but can be translated in many ways
into SQL conditions:

DateOrd between '2017-01-01' and '2017-12-31';

DateOrd >= '2017-01-01' and DateOrd <= '2017-12-31';

DateOrd > '2016-12-31' and DateOrd < '2018-01-01';

DateOrd like '2017-%';

cast(DateOrd as char) like '2017-%';

substr(cast(DateOrd as char),1,4) = '2017';

year(DateOrd) = 2017;

extract(year from DateOrd) = 2017;

... and some more

The idea of storing a reference query that we can compare with the student’s answer
is absolutely and definitively unrealistic. So, let us drop it.

Instead of examining the query submitted by the student, we could execute it and
compare its result set with that of the reference query. If they are identical, then the
answer of the student is likely to be correct.

This is easy to check, but the conclusion of this comparison must be drawn more
carefully:

– First, we should compare sets and not sequences, since row ordering, at least
when not specified by the query, depends on the execution strategy chosen by
the SQL engine.

– If the sets are different, we can conclude that the student’s query is semanti-
cally incorrect; however, our diagnostic can be more precise to help the student
modify her answer:

• what is the size of each result set
• how many rows does each result set contain that are not in the other one.

– If the sets are identical, the student’s query may be correct, but this also may be
a probabilistic accident! Indeed, two independent queries may produce the
same result set though they have different meaning.

– The result sets may be the same while their sizes differ; this means that the
student’s result set includes duplicates (we suppose that the reference query
discards duplicates).

– If both sets are empty, their comparison would be highly inconclusive.

14 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

In addition, showing the result set of their own answer and that of the reference
query (of course without disclosing the latter) may help the students develop their
answer or correct it.

3.9 An interactive SQL tutor

We consider the short analysis of the previous section as the set of minimal require-
ments for a variant of the SQL interpreter that we will call Interactive SQL tutor.

3.9.1 The database
For each exercise, we store its full text in plain language, its reference solution and
the name of the database against which the query must be executed. Since the text
may be rather long, a short summary, acting as a title, can be useful to allow the
student to select the exercise in a list.

In addition, it is useful to classify exercises into categories. A category is a
collection of exercises that share common properties, such as the structure of the
solution (basic queries, sub-queries, join, grouped data, recursive queries, etc.) or
the nature of the application domain (statistics, tree processing, text processing,
active database, temporal database, etc.)

Finally, within each category, we could assign a difficulty level to each exercise.
This gives us the structure of table EXERCISE in which we will store the descrip-

tion of the exercises (Script 3.10).

Script 3.10 - Structure of the exercise database

Script 3.11 shows the definition of an exercise (medium difficulty: Level = 2) in the
sub-query category (i.e., the solution of which is suggested to use a sub-query). It
must be executed on database ORDERS.db. Its title, Customers whose account is
greater than the average of their city, will be used by the student to select it.

create table EXERCISE(
 ExID varchar(64) not null primary key,
 DB varchar(128) not null,
 Category varchar(32),
 Level integer,
 Title varchar(64),
 ProblemText varchar(512),
 RefQuery varchar(512));

15

Printed 5/6/23

3.9.2 The interface
Now, let us define the way students will use the SQL tutor. We call a session, the
activity during which a student is invited to solve a set of exercises. We suggest that
students proceed in two steps:

1. selecting the subset of exercises of the session; this subset is defined by one or
several levels within a category (Figure 3.7),

2. trying to solve each (or some) of them (Figure 3.8).

Script 3.11 - Definition of an exercise

Figure 3.7 - Selecting the exercises of the session

Figure 3.8 - Selecting an exercise to solve

insert into EXERCISE values(
 'Q02-07',
 'ORDERS.db',
 'sub-query',2
 'Customers whose account is greater than the average
 of their city',
 'Display the list of the Id of the customers whose account
 is greater than the average account of the customers
 of their city.',
 'select CustID,Name,City,Account from CUSTOMER as CUST
 where Account > (select avg(Account) from CUSTOMER
 where City = CUST.City)'
);

16 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

Figure 3.9 - The main dialogue box of the SQL tutor

The window of the SQL interpreter shown in Figure 3.6 is no longer sufficient to let
the student practice the exercises of the session. We suggest the new layout of Figure
3.9. The first text area displays the text of the selected exercise. The student enters
the SQL query that translates this text in the second area, check button Evaluate my
answer then clicks on button OK to submit it. The tutor evaluates this SQL query
and displays its diagnostic in the third text area.

17

Printed 5/6/23

The interface also allows the student to execute the query she just entered (button
Execute my query) or to execute the reference solution (button Execute the refer-
ence query).

3.9.3 The tutor engine
Now, we examine the way the tutor will evaluate the SQL query submitted by the
student. The analysis developed in Section 3.8 is based on a set of metrics defined as
the size of the result sets of combinations of the student’s query and the reference
query.

Let rQuery be the reference query and sQuery the query submitted by the student
(actually the names of the variables that contain these queries). The first one is
extracted from the database and the second one from the second text area of the
interface. The metrics are computed in Script 3.12:

– N1, the size of the result set of rQuery
– N2, the size of the result set of sQuery
– N12, the size of the difference of the result sets of rQuery and sQuery
– N21, the size of the difference of the result sets of sQuery and rQuery

We notice that metrics N12 and N21 are not computed on the source queries but on
views defined on them. This trick is necessary to avoid set operator confusion when
the source queries are themselves based on such operators.

We also note that metrics N1 and N2 are defined on multisets (in which dupli-
cates, if any, are preserved) while metrics N12 and N21 are defined on pure sets
(union, intersect and except eliminate duplicates).

Script 3.12 - Computing the raw metrics

The evaluation of sQuery derives from the reasoning rules of Script 3.13. They
identify seven patterns:

1. The reference result set is empty: the diagnostic may be quite imprecise.

extract N1 = select count(1) from ($rQuery$);
extract N2 = select count(1) from ($sQuery$);

create temp view _sview as select * from ($sQuery$);
create temp view _rview as select * from ($rQuery$);

extract N12 = select count(1) from (select * from _rview
 except
 select * from _sview);

extract N21 = select count(1) from (select * from _sview
 except
 select * from _rview);

18 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

2. Considered as pure sets, the result sets are identical: the student’s query may
be considered correct.

3. In addition, considered as multisets, the result sets are not identical: the stu-
dent’s query may be considered correct but its result set includes duplicates.

4. The reference result set contains rows that are not in the student’s result set.
5. The student’s result set contains rows that are not in the reference result set.
6. The reference result set is not empty but none of its rows appears in the stu-

dent’s result set.
7. The reference result set includes some of the rows of the student’s result set

but not all.

Script 3.13 - Algorithm of the diagnostic

The state of the interface shown in Figure 3.9 illustrates the case of a student’s query
that is formally different from the reference query but that produces the same result
set without duplicates (pattern n° 2). The diagnostic is appreciative but nevertheless
invites the student to compare her query with the reference query. This shows that
the tutor is more apt at detecting erroneous answers than identifying correct queries,
an approach that is not uncommon among (human) teachers!

3.9.4 Improving the SQL tutor
The SQL tutor we have developed is just a prototype that can be enriched and
improved in many ways. Let us mention some of them.

if (N1 = 0):
 < reference result set empty; imprecise diagnostic >
else:
 if (N12 + N21 = 0):
 < No row missing; answer probably correct >
 if (N1 = N2):
 < Same size >
 else:
 < Some duplicates >
 else:
 < Row(s) missing in some result set(s). Answer incorrect >
 if (N12 > 0 and N21 = 0):
 < Rows missing in student result set >
 if (N12 = 0 and N21 > 0):
 < Erroneous row(s) in student result set >
 if (N12 > 0 and N21 > 0):
 if (N1 = N12):
 < All the rows of student result set are erroneous >
 if (N1 > N12):
 < Some rows of student result set are erroneous >

19

Printed 5/6/23

1. Reducing false positives
The main weakness of the SQL tutor is the correct interpretation of patterns n°
1, 2 and 3, when result sets are identical, be they empty of not. The student’s
query may be correct but this can just be a statistical accident, that is, a false
positive! We can reduce the uncertainty of such diagnostic by executing the
queries against several databases with the same schema but with different
contents. The value of column DB in table EXERCISE will then be a list of data-
base names. The metrics collected for each database are consolidated to build a
more reliable diagnostic.

2. Refining the learning process
The training scenario enacted by the SQL tutor is fairly primitive. It would be
more flexible, and therefore more efficient, if the tutor could help the student
who fails to find the right answer or who explicitly asks for help. Some simple
help features can be added: a short reminder of the underlying theory or of the
SQL syntax, hints through which one or two levels of suggestion can be
displayed when needed and comments associated to the reference solution.

3. Encrypting reference queries
Honest students are those who try to solve the problems by themselves without
resorting to dishonest sources. A particular dishonest source would be that
provided by this script:
openDB SQLtutor.db;
select RefQuery from EXERCISE
where ExID = 'Q02-07';

The most obvious countermeasure to such work-around is to encrypt the values
of column RefQuery, as shown below:
insert into EXERCISE values(

'Q02-07',
 ...,
 encrypt('select CustID,Name,City,Account from CUSTOMER
 as CUST where Account > (select avg(Account)
 from CUSTOMER where City = CUST.City',
 'my_password'))
);

The inverse operation will restore the original value:
select decrypt(RefQuery,'my_password') from EXERCISE
where ExID = 'Q02-07';

The database is now more secure, but not by far! A clever student could be
tempted to have a look at the source code of the scripts, in which she will
quickly discover the value of the decrypting key.
A more secure technique can be developed as a couple of functions stored in
Python module UserUDFlib_for_SQL.py or UserUDFlib_for_SQLfast.sql (the
source code of which being, of course, unavailable!). The first function appears

20 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

to be an innocuous function, for instance that returns the current time (e.g.,
get_time()). It is called by the main script at start time. In addition to its apparent
action, this function stores a kind of cookie in the UDF module. The second
function (e.g., get_key()) is called to get the decrypting key. It returns the actual
key if the cookie exists or a fake key otherwise. Understanding this mechanism
and reproducing it to get the reference queries is much more complicated, at
least for novice hackers. Considering that this application is not critical, this
technique can be quite sufficient to ensure a fairly good level of security.
In the prototype application available in the SQLfast distribution, the reference
queries can be, if desired, converted in the database in the base64 coding
scheme:

update EXERCISE set RefQuery = b64encode(RefQuery,'std');

4. Student management
The SQL tutor focuses on the availability of collections of exercises as well as
the evaluation of student’s answers. In the scenarios provided by this applica-
tion, the student is just an external, unidentified user. This extension suggests to
integrate students in the tutoring process. This encompasses two aspects:

• first allowing students to suspend, resume and record their sessions
• secondly, allowing teachers to register students, to examine their scores and

to evaluate them.

5. Exercise management
A last service application will be welcome: a data entry interface to allow
teachers to examine, enter, check, modify and delete exercises.

3.10 The scripts

The algorithms and programs developed in this study are available as SQLfast
scripts in directory SQLfast/Scripts/Case-Studies/Case_SQL_Interpreters. Actually,
they can be run from main script SQL-Interpreter-MAIN.sql, that displays the selec-
tion box of Figure 3.10.

The scripts of the SQL tutor have been stored in subdirectory SQL-Tutor. The
student component (the only one so far) of the SQL tutor is run by executing script
SQL-Tutor-STUDENT.sql. This script executes an exercise module script that loads
in the database the set of exercises the student is interested. in. This script is given a
name starting with prefix 'SQL-Exercises-'. Several exercise scripts, both in English
and in French, have been included in the SQLfast distribution.

21

Printed 5/6/23

Figure 3.10 - Selecting an SQL interpreter

The scripts of this case study are provided without warranty of any kind. Their sole
objectives are to concretely illustrate the concepts of the case study and to help the
readers master these concepts, notably in order to develop their own applications.

22 Case study 3 • Interactive SQL interpreters

Printed 5/6/23

