
Case study 1 1

Four hours to save the library

Objective: This case study describes the emergency writing of a small
application that was to implement the core functions of the manage-
ment of a small library. The challenge was to replace the current soft-
ware, lost in a recent crash of the server. All that was left after the
accident was the last backup of the database, unfortunately in an
unknown format.
Keywords: rapid application development, application prototyping,
application architecture, GUI

1.1 An emergency situation

This one is a true story.
A friend of mine manages a public library that lends comic books. That library is

very popular, counting about 3,000 readers and 20,000 books. Its activity is esti-
mated to about 4,000 transactions (lending and return) per week.

Some time ago, he called me, desperate, to tell that his server was destroyed
during the storm of the last weekend. This server hosted the library management
software he has been using twice a week. Everything had disappeared: the software
sources and binaries, the documentation, the database and even the name of the
language in which the application was written. The software was developed decades
ago by the nephew of a friend of the brother in law of the fitness instructor of his
wife (just synthesizing) and is therefore what we can call both proprietary and

2 Case study 1 • Four hours to save the library

Printed 5/6/23

orphan. It seemed that the author of the application is now breeding sheeps in
Corrèze and that he has long abandoned his software development activity.

All that was left was the last backup of the database on a USB key.

1.2 First mission: recovering the data

The first objective was to extract as much usable data as possible from the backup
database.

That database is a collection of 18 files with extensions *.lis, *.fic, *.ndx, *.mmo,
*.id and *.tab. It turns out that files *.fic were WinDev data files and that all the other
files could be ignored. Unfortunately, no (free!) converter utility for Windev data
files, nor a description of the structure of these files could be found on the web.

A visual inspection of *.fic files through notepad++ showed that some data values
are Latin-1 character strings but that others are coded as pure bit strings. In partic-
ular, foreign keys are not expressed as character strings as is usual, but as 24-bit
pointers. We wrote a small Python program to extract these data and to convert them
into SQL insert statements. Three files, comprising the core of the data, were
processed in this way, namely the reader file, the book file and the borrowing file,
and were transferred into three similar relational tables (see Script 1.1).1 The other
files were ignored. The resulting database was about 100 MB large.

By analyzing the data stored in these tables, we determined the data types and the
uniqueness constraints, from which we derived the primary keys. In table BORROW,
we detected two foreign keys, respectively to table BOOK and table READER.
However, we decided not to declare them to allow for the recording of dangling
(i.e., corrupt) borrowings for which either the book or the reader (or both) were
missing.

As is usual in most DBMS, an index is automatically associated with each
primary key. In addition, we create an index for each foreign key, be it declared or
implicit. Since foreign key {BookID} is a prefix of the primary index of BORROW,2
the latter also supports this foreign key. We just had to create an index on
{ReaderID}, the second foreign key.

1.3 The basic functions

Since the accident, the trace of the day-to-day operations has been painfully written
down in a paper notebook. The most urgent tasks were, as expected, book borrowing

1. In a further chapter, we will develop a more powerful library management application. This
one can be considered a prototype version of the latter. Hence the name LIBRARY-proto.db of
the database.
2. and since this index is implemented by a B-tree ...

3

Printed 5/6/23

and book return. However, registering new readers and new books and consulting
the data was also considered critical.

We decided to write a small, no-frills, interactive program that supports these
activities and that made it possible to convert the handwritten backlog into elec-
tronic data. Three core tasks were identified: registering new readers and new
books, borrowing and returning books, querying reader and book data.

Script 1.1 - The LIBRARY-proto.db database [Script LIBRARY-Create-DB-proto.sql]

1.4 The main window

The main window is the control panel of the application. It lets the user select a func-
tion (Figure 1.1). Button OK starts the selected function while button Cancel closes
the application. Setting the commit mode to autocommit (each data modification
query is wrapped into its own transaction) allows us to ignore explicit commitDB
statements.

Each function is implemented as an independent procedure. These procedures are
called from the body of a while-endwhile loop by a series of if statements
(Script 1.2). This writing style is not particularly efficient from the point of view of
programming science (all the conditions are evaluated in each execution of the body
of the loop), but it provides a clear and concise code, which is essential in this
experiment.

There is no need to close the database explicitly since it is automatically closed
when the main script finishes.

create table BOOK(
 BookID varchar(32) not null primary key,
 Title varchar(96) not null,
 Collection varchar(32),
 Authors varchar(64),
 Publisher varchar(32));

create table READER(
 ReaderID varchar(32) not null primary key,
 RegDate char(24) not null,
 Name varchar(48) not null,
 Address varchar(64));

create table BORROW(
 BookID varchar(32) not null,
 ReaderID varchar(32) not null,
 BorrowDate date not null,
 ReturnDate date,
 primary key (BookID,BorrowDate));

create index ndx_borrow_reader on BORROW(ReaderID);

4 Case study 1 • Four hours to save the library

Printed 5/6/23

Figure 1.1 - The main window lets the user select a function

Script 1.2 - Code of the control panel [Script LIBRARY-Main.sql]

1.5 Registering a new reader

The data entry box for new readers shown in Figure 1.2 was found quite appropriate.
The code is straightforward (Script 1.3):

– initializing the field variables (notably to the current date)
– acquiring field values from the user (ask-u)

parameter commitmode = autocommit;

openDB LIBRARY-proto.db;
set oper = 1;

while (True);
 selectOne-u oper = [/b@S20SELECT A FUNCTION]
 {BORROWING}|Borrow|Return
 ||{READERS}|New|Modify|Consult
 ||{BOOKS}|New|Consult;
 if ('$DIALOGbutton$' = 'Cancel') exit;

 if ($oper$ = 1) execSQL Library/_LIB-BORROWING-BORROW.sql;
 if ($oper$ = 2) execSQL Library/_LIB-BORROWING-RETURN.sql;
 if ($oper$ = 3) execSQL Library/_LIB-READER-NEW.sql;
 if ($oper$ = 4) execSQL Library/_LIB-READER-MODIFY.sql;
 if ($oper$ = 5) execSQL Library/_LIB-READER-CONSULT.sql;
 if ($oper$ = 6) execSQL Library/_LIB-BOOK-NEW.sql;
 if ($oper$ = 7) execSQL Library/_LIB-BOOK-CONSULT.sql;

endwhile;

5

Printed 5/6/23

– checking the validity of these values; looping until the values are valid
– inserting the values in the database (insert); field Address is converted into a

null value if empty
– checking the result, committing (commitDB) or reporting errors (showMes-
sage), if any.

Figure 1.2 - Data entry box for a new reader

Script 1.3 - Code of the procedure to register a new reader [Script _LIB-READER-
NEW.sql]

1.6 Registering a new book

The procedure that registers a new book is quite similar to that of reader registering.
The data entry box is shown in Figure 1.3. The value of BookID of a book is printed

set rid,dat,nam,add = ,$date$,,;

while (True);
 ask-u rid,dat,nam,add = [/bRecord a new reader (OK/Cancel)]
 Reader ID*:|Registration date*:|Name*:|Address:;
 if ('$DIALOGbutton$' = 'Cancel') return;
 if (trim('§rid§') <> '' and 'dat' <> ''
 and trim('§nam§') <> '') exit;
endwhile;

insert into READER(ReaderID,RegDate,Name,Address)
 values('§rid§','dat','§nam§',
 case when '§add§' = '' then null else 'add§' end);

if ('$SQLdiag$' <> 'OK')
 showMessage Recording error ($SQLdiag$);

6 Case study 1 • Four hours to save the library

Printed 5/6/23

as a barcode on a label stuck on the cover of the book. This way, a book can be iden-
tified by merely scanning its barcode.

Figure 1.3 - Data entry box for a new book

1.7 Borrowing a book

The ID of the book and that of the reader are entered through the box shown in
Figure 1.4. The book ID is collected through the codebar scanner while the reader is
identified through a predefined list of reader names (actually ReaderID + Name).

Figure 1.4 - Borrowing a book

The code of this operation is shown in Script 1.4. Statement ask returns a value of
BookID and a value of ReaderID. These values can be considered valid due to the
way they are collected: through barcode scanning and predefined value list. There-
fore no validation code has been included.

However, we must ensure that the database records this book as being available,
that is, there is no BORROW row for this book with a null ReturnDate value.

7

Printed 5/6/23

Searching the database for such a row must fail ('$SQLdiag$' = 'NONE'), in
which case a new row describing the borrowing can be inserted and committed.

The value of BorrowDate is that of current_date while the return date (Return-
Date) will be left as null until the book is returned.

Script 1.4 - Code of the procedure to borrow a book [script _LIB-BORROWING-
BORROW.sql]

1.8 Returning a book

Returning a book translates into assigning the current date to column ReturnDate to
the row describing the current borrowing of the book. This row then becomes a
historical record for both the book and the reader.3

The box of Figure 1.5 comprises a single field, in which the value of BookID has
to be entered through barcode scanning.

Figure 1.5 - Returning a book

The code of the operation is shown in Script 1.5. Once the book ID has been
collected (ask), the borrowing date (BorrowDate) of the book is extracted

ask book,read = [/bNEW BORROWING] Book:
 |Reader:[!select ReaderID||' '||substr(Name,1,20),ReaderID
 from READER order by Name];
if ('$DIALOGbutton$' = 'Cancel') return;

extract r = select ReaderID from BORROW
 where BookID = '$book$' and ReturnDate is null;

if ('$SQLdiag$' = 'NONE');
 insert into BORROW(BookID,ReaderID,BorrowDate)
 values('$book$','$read$',current_date);
else;
 showMessage This book is currently borrowed by r;
endif;

3. In some countries, maintaining historical data on readers may be illegal for privacy reason.

8 Case study 1 • Four hours to save the library

Printed 5/6/23

(extract). Since columns {BookID, BorrowDate} form the primary key of the table,
the values of variables book and dat can be used to identify the row in which the
value of ReturnDate is set to the current date (update).

Script 1.5 - Code of the procedure to return a book [script _LIB-BORROWING-
RETURN.sql]

1.9 Updating the data of a reader

Updating a reader is performed in two steps: first selecting a reader from a list of
names, then presenting the data of this reader to let the user change some values
(Script 1.6).

1.10 Querying reader and book data

We chose a procedure which is both simple and general. For both READER and
BOOK tables, the user selects a column and an operator, then enters a value, consid-
ered case-insensitive (Figure 1.6).

Figure 1.6 - Consulting the readers whose address includes the word ’Bruxelles’

ask book = [/bScan the barcode of the book (OK/Cancel)]
 Book ID:;
if ('$DIALOGbutton$' = 'Cancel') return;

extract dat = select BorrowDate from BORROW
 where BookID = '§book§'
 and ReturnDate is null;

if ('$SQLdiag$' = 'OK');
 update BORROW
 set ReturnDate = current_date
 where BookID = '§book§' and BorrowDate = 'dat';
else;
 showMessage The book §book§ is not currently borrowed;
endif;

9

Printed 5/6/23

Script 1.6 - Code of the procedure to modify the data of a reader [script _LIB-
READER-MODIFY.sql]

The list of operators to select from comprises the usual comparison operators (<, >,
<=, >=, <>) + includes, a reduced version of SQL predicate like.

A first version of the function produced the result of Figure 1.7.

+----------+------------+---------------+------------------------------+
| ReaderID | RegDate | Name | Address |
+----------+------------+---------------+------------------------------+
R.0538	2016-11-13	SMITH Bernard	Place Bockstael, Bruxelles
R.0572	2016-11-21	JONES F. J.	108, Sq de Meeus, Bruxelles
R.0668	2016-12-21	TRAVIS K. K.	9, Rue H. Stockel, Bruxelles
+----------+------------+---------------+------------------------------+

Figure 1.7 - The readers living in Brussels

It was considered insufficient since the main consultation needs were related to the
past and current borrowings of each reader or of each book. Something like Figure
1.8, reporting on each reader and on their borrowings (same for books) would be
better.

The code of both procedures is exactly the same, except for the name of the table
and the list of column names. Therefore, we split the code into three procedures:
_LIB-READER-CONSULT, _LIB-BOOK-CONSULT and _LIB-CONSULT. The latter does
all the work while the first two just prepare the specific arguments (script 1.7 for
consulting readers).

ask rid = [/bSelect a reader to modify]
 Reader ID:[!select ReaderID||' - '||Name, ReaderID
 from READER order by Name];
if ('$DIALOGbutton$' = 'Cancel') return;
extract dat,nam,add = select RegDate,Name,Address from READER
 where ReaderID = '§rid§';
while (True);
 ask-u dat,nam,add = [/bModify the reader (OK/Cancel)]
 Reader ID*:|Registration date*:|Name*:;
 if ('$DIALOGbutton$' = 'Cancel') return;
 if (trim('dat') <> '' and trim('§nam§') <> '') exit;
endwhile;

update READER
set RegDate = '§rid§', Name = '§nam§',
 Address = case when '§add§' = '' then null else '§add§' end
where ReaderID = '§rid§';

if ('$SQLdiag$' <> 'OK')
 showMessage Recording error ($SQLdiag$);

10 Case study 1 • Four hours to save the library

Printed 5/6/23

+----------+---------+---------+---------+---------+------------+------------+
| ReaderID | RegDate | Name | Address | Book | BorrowDate | ReturnDate |
+----------+---------+---------+---------+---------+------------+------------+
R.0538	2016...	SMITH..	...			
				B.01196	2017-05-08	2017-05-14
				B.01377	2017-05-10	2017-05-14
R.0572	2016...	JONES..	...			
				B.01086	2017-05-20	--
R.0668	2016...	TRAVIS..	...			
				B.01196	2017-05-20	--
				B.01208	2017-05-26	--
				B.01196	2017-05-01	2017-05-08
+----------+---------+---------+---------+---------+------------+------------+

Figure 1.8 - The readers living in Brussels and the history of their borrowings

Script 1.7 - Code of the procedure to consult readers [script _LIB-READER-
CONSULT.sql]

Procedure _LIB-CONSULT is a bit more complex (Script 1.8). From the data collected
by the dialogue box (ask), the procedure builds the selection condition (set
condition = ...) that will be inserted in the SQL select query.

This query comprises two subqueries: the first one extracts the data of READER
rows that satisfy the condition (the blue one in Figure 1.8) and the second one
extracts the data of BORROW rows that depend on each READER row selected (the
red ones in Figure 1.8).

READER (or BOOK) subquery
Let us examine the first subquery (in blue in Script 1.8). The from and where
clauses are straightforward:

from $table$
where $condition$

The select clause comprises two lists of column names. The first one is the list of
column names of table READER (or BOOK) while the second one acts as a padding
for the columns of BORROW, that must be empty. The number and names of the
latter columns are known and are the same for tables READER and BOOK. The
select list comprises an additional column (Sort) that will be explained later.

BORROW subquery
The second subquery (in red in Script 1.8) generates the depending rows of
BORROW. Here, the padding columns are the first ones. They comprises an empty
column for each column of READER (or of BOOK). Their select sublist is built in
variable empty by statement compute, that works as follows:

set table = READER;
set fields = ReaderID,RegDate,Name,Address;

execSQL LIBRARY/_LIB-CONSULT.sql;

11

Printed 5/6/23

– variable fields contains the list of column names, separated by commas
– function itemLen(S,sep) returns the number of items in list S with separator

sep; so, itemLen('$fields$',',') computes the number of column
names in list fields

– function repeat(S,n) returns a string formed by n instances of substring S
– for table READER, that comprises four columns, variable empty contains
'','','','',, that is, 4 instances (= number of columns) of substring '',

– the arguments of compute comply with the SQL syntax for character
constants, according to which a constant must be quoted and each internal
quote must be doubled; therefore, substring '', must be coded ''''','.4

Now, the structure of the compute statement should be clearer!
The subquery is a join between table BORROW, from which data are extracted,

and table READER (or BOOK), reduced to its selected rows ($condition$).

Sorting rows
The two subsets of rows are simply unioned in the from clause. The order of the
rows resulting from this union is undefined and does not produce the nice hierar-
chical ordering shown in Figure 1.8, in which each READER row is directly followed
by its dependent BORROW rows (same for BOOK).

We must force the rows to appear in this definite order. In order to do so, we build
an artificial column, called Sort, comprising column ReaderID (more generally
$table$ID) plus suffix -0 for READER (or BOOK) and -1 for table BORROW. In this
way, all the rows with the same value of ReaderID are grouped, and, in each such
group, the row of READER appears in the first position.

The particular structure of the from clause, as the union of two subqueries, is
necessary to hide column Sort, which is meaningless for users.

Finally, we decided to send the resulting data in a text window. Those data are
first stored in variable result, which is then displayed through statement showText.

1.11 Conclusion

The librarian claimed to be quite happy with this small application. Despite its
unpolished interface and simplistic logic, it allowed him to keep his activity alive
and to encode the backlog of recent transactions written on paper.

Two weeks later, on the basis of his comments, some improvement was carried out
to the application, that, from then, has been used for about one year, until the data
were migrated to a more professional software.

4. For any complaint, contact www.iso.org

12 Case study 1 • Four hours to save the library

Printed 5/6/23

Script 1.8 - Code of the procedure to consult a reader or a book [script _LIB-
CONSULT.sql]

Though data recovery took some time (about 12 hours), due to the lack of documen-
tation, writing the complete application just cost:

– less than 70 instructions
– 4 hours.5

Of course, the context in which application LIBRARY has been developed is just a
minor issue. Actually, it was a nice opportunity to experiment with the concept of
rapid application development (aka RAD) and application prototyping.

Case study The human factor tackles a similar application (library management)
in which, due to the wider variety of users, the way they interact with the program
leads to new problems.

ask key,op,val = Property:[($fields$)]
 |operation:[(=,<,>,<=,>=,<>,includes)]|value:;
if ('$DIALOGbutton$' = 'Cancel') return;

if ('op' in ('=','<','>','<=','>=','<>'))
 set condition = lower(key) op lower('val');
if ('op' = 'includes')
 set condition = lower(key) like '%'||lower('val')||'%';

compute empty = repeat(''''',',itemLen('$fields$',','));
outputOpen result.var;

select $fields$,RID as Reader,BID as Book,
 BorrowDate,ReturnDate
from
(select $fields$,'' as RID,'' as BID,
 '' as BorrowDate,'' as ReturnDate,$table$ID||'-0' as Sort
 from $table$ where $condition$
 union
 select $empty$ B.ReaderID as RID,B.BookID as BID,
 BorrowDate,ReturnDate,B.$table$ID||'-1' as Sort
 from BORROW B, $table$
 where B.$table$ID = $table$.$table$ID and $condition$
)
order by Sort,ReturnDate;

outputAppend window;
showText result = [/w0/x100/y20];

5. Probably twice as much as what a professional application programmer would have spent!

13

Printed 5/6/23

A last remark
The scripts developed in this document are provided without warranty of any kind.
Their sole objectives are to concretely illustrate the concepts of the case study and to
help the readers master these concepts, notably in order to develop their own appli-
cations.

14 Case study 1 • Four hours to save the library

Printed 5/6/23

